

Federal Ministry for Economic Affairs and Energy

Business models and options for RE hybrid systems on islands

Community-based Renewable Energy Conference October 18, 2016

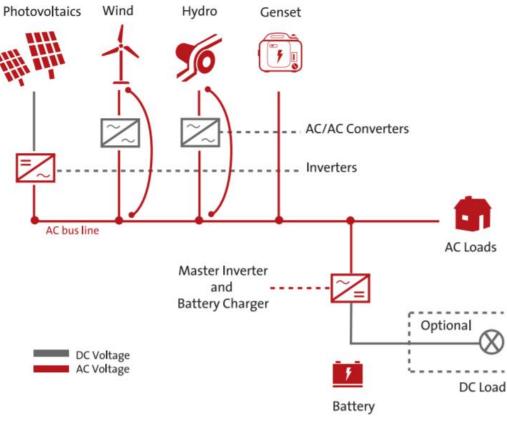
Rationale

- The Project Development Programme (PDP) supports the Ministry of Energy (MoEN) to develop Thai-German Renewable Energy Communities.
- The aim is to increase access to electricity for off-grid island communities that currently have limited electricity supply by integrating cost effective renewable energy sources.
- PDP's core interest is to develop and implement a sustainable business model for RE- hybrid grids on off-grid islands, that can be replicated to other islands.

Federal Ministry for Economic Affairs and Energy

Background

- October 2015 1st CBRE Conference: PDP was contacted by 2 Thai Islands
- February 2016 PDP started activities to develop RE hybrid grids on off grid islands
- April 2016 Visited Koh Jik, a showcase project for community-based RE-hybrid grid systems
- May 2016 PDP started to develop a general concept to implement communitybased RE-hybrid grid systems
- June 2016 Consortium building to upgrade the system on Koh Jik (include more PV panels, optimizing the existing system)
- August 2016 Site visit to Koh Jik with project consortium; pre-assessment (technical and socio-economic)



Federal Ministry for Economic Affairs and Energy

Introduction – RE-Hybrid Grid Systems

Schematic AC mini-grid system [2]

Zusammenarbeit (GIZ) GmbH

"The desolate technical condition and performance of solar or hybrid mini-grids is often caused by an inappropriate management of the integral system or lack of finance to operate and manage the system." [1]

Caroline Nijland Director Business Development Foundation Rural Energy Services (FRES)

Federal Ministry for Economic Affairs and Energy

Common Barriers and Challenges

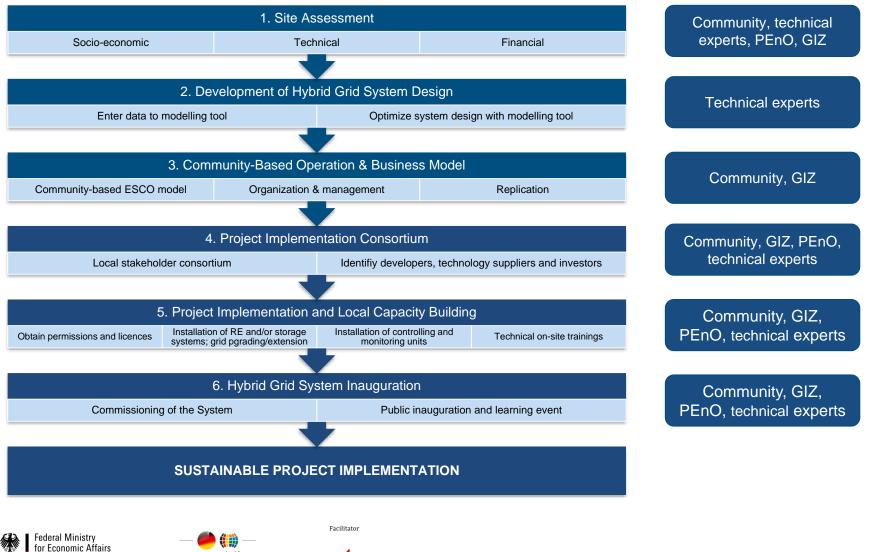
- Iack of know-how:
 - technical skills to design, install and maintain the system
 - business skills (to develop sustainable tariff plans, proper management and additional added value)
 - financing resources
- Community-owned systems are often vulnerable to the "tragedy of the commons" effect if they do not define clear regulations for consumption and payment

Federal Ministry for Economic Affairs and Energy

How to overcome these barriers and challenges?

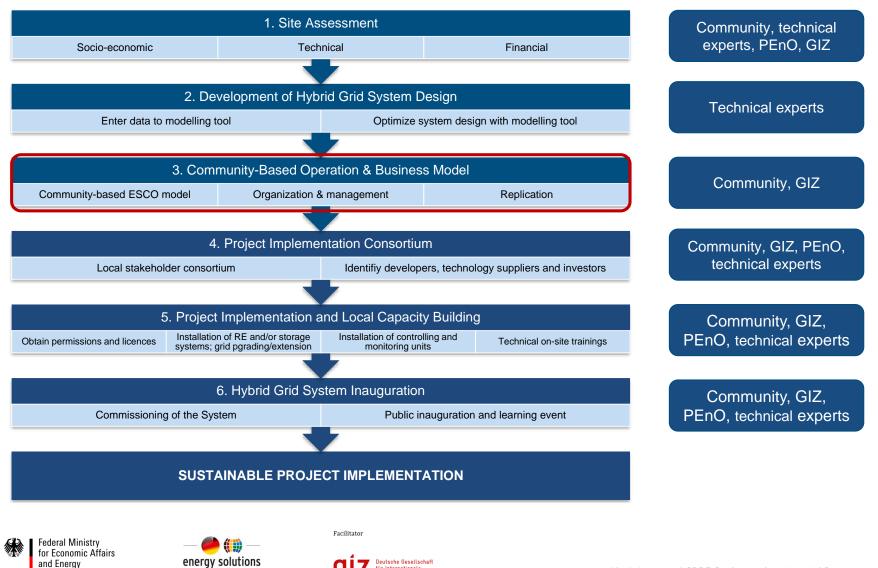
- Assessment of local conditions
- Gather reliable technical data
- Find right partners and technical equipment
- Proper operation and maintenance structure
- Capacity building and training
- Appropriate electricity tariff and payment arrangements

Sound technical design and business model as well as a suitable project consortium are key to success!



Federal Ministry for Economic Affairs and Energy

Project Development – Who is doing what?



energy solutions

MADE IN GERMANY

and Energy

Project Development – Who is doing what?

für Internationale

usammenarbeit (GIZ) GmbH

MADE IN GERMANY

Katrin Lammers | CBRE Conference | 18.10.2016 | Page 9

Business Models for RE Hybrid Grid Systems

- utility model
- private sector-based model
- community based model
- hybrid model

"A mini-grid could consist out of many independent systems. The "link" that makes the mini-grid is the operator, not the copper between users." [1]

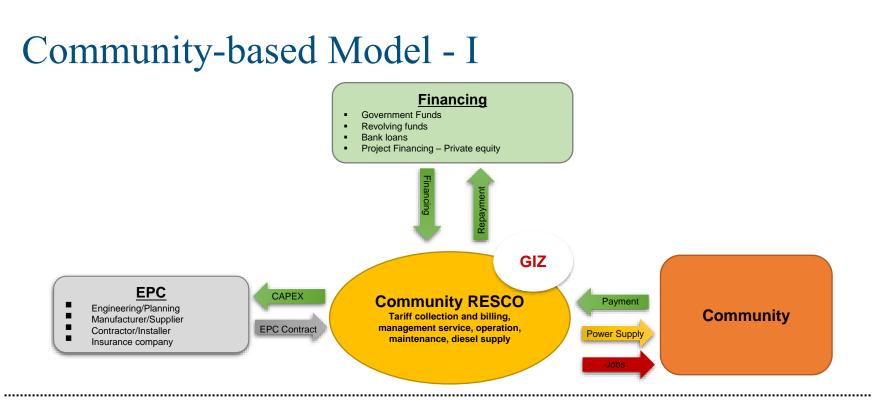
Claude Ruchet Deputy Director Studer Innotec

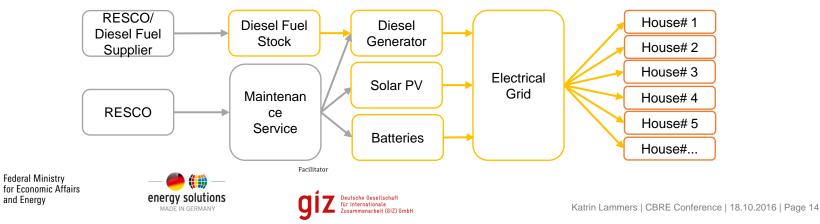
Federal Ministry for Economic Affairs and Energy

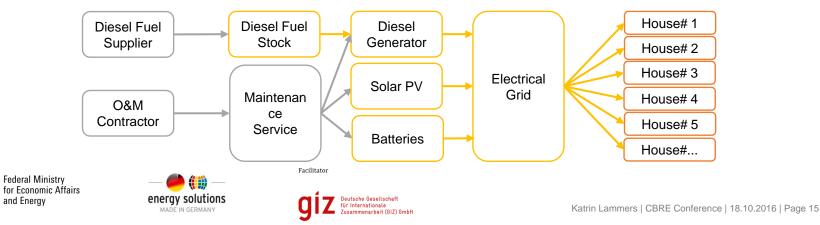
Business Models for RE Hybrid Grid Systems

- utility model
- private sector-based model
- Community-based model
- hybrid model

"A mini-grid could consist out of many independent systems. The "link" that makes the mini-grid is the operator, not the copper between users." [1]


Claude Ruchet Deputy Director Studer Innotec


Federal Ministry for Economic Affairs and Energy

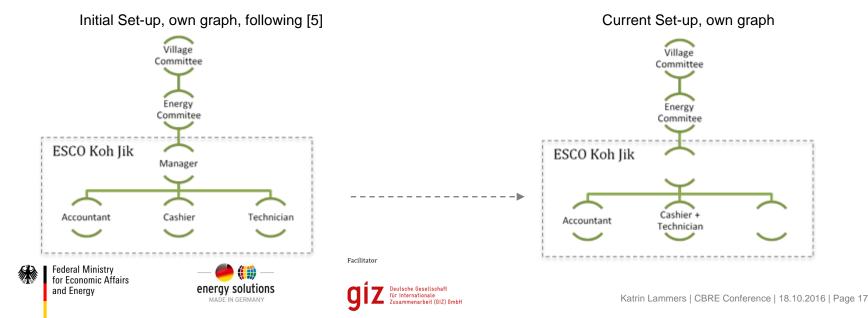

Supply Chain

Community-based Model - II

Supply Chain

Benefits of the Community-based Model

- the owners are also the consumers: strong interest in the quality of the service
- self-sufficiency and self-governance: quick decision making, less bureaucratic than other models
- generation of jobs in the community (directly linked through O&M, tariff collection and management services of the system, indirectly through productive use of energy)
- possibility to design tailor made tariffs taking local conditions into consideration


Federal Ministry for Economic Affairs and Energy

Example – Koh Jik, Thailand

- The community is the operator of the hybrid grid system, Koh Jik RESCO)
 - Collects monthly payment from the users
 - Pays for all operation & maintenance cost
- Revenue Cost = Profit
 - 80,000 THB 40,000 THB = 40,000 THB per Month

Example – Akkan, Morocco [3]

- 3 systems:
 - 5.76 kWp PV, 8.2 kVA single-phase diesel generator, battery bank with 24 elements (48V, for a 4 days of back-up capacity) => large micro grid
 - 480 Wp of PV, 7 kWh of batteries => very small micro-grid
 - 160 Wp of PV, 2.4 kWh batteries => Solar home system
- The entire project includes 35 connections: 31 on the larger grid (27 households + 4 community facilities and public lighting); 3 households on the smaller grid; and 1 household on the SHS
- RE are producing 95% of the power
- 20 % financed by the community

Example – Akkan, Morocco [3]

- operation, maintenance, and replacement costs are financed through the monthly flat tariffs paid by the users (\$5,8/month for 275Wh/day; \$11,6/month for 550Wh/day)
- Binding contracts for the electricity service were signed between the community association and each user (in case of non-payment, the user would be disconnected and would have to repay his debts and a reconnection fee to be reconnected)
- initial connection fee gives a clearer idea of costumers ability and willingness to pay
- a local association was created to be responsible for the O&M, the replacement, and the fee collection
- maintenance responsibilities were subcontracted to a local technician

Federal Ministry for Economic Affairs and Energy

Example – Diakha Madina, Senegal [3]

- 3,15 kWp of PV, 24 batteries (48V, 4 days storage capacity), backup generator of 3,6 kVA
- The system was installed for public uses, supply of the health center, the street lighting system and the village water pump
- a local leader is responsible for the collection of payment, O&M and for the component replacement
- contracted trained local staff makes regular visits to check the system and perform and necessary repairs

Federal Ministry for Economic Affairs and Energy

Federal Ministry for Economic Affairs and Energy

Thank you for your attention!

Katrin Lammers Project Development Programme (PDP), GIZ Thailand katrin.lammers@giz.de

Sources

- [1] Alliance for Rural Electrification (ARE): <u>Risk Management for Mini-Grids</u>
- [2] RECP, euei pdf, ARE, REN21: Mini-grid policy toolkit
- [3] ARE, USAID: <u>Hybrid Mini-Grids for Rural Electrification: Lessons</u> <u>Learnt</u>
- [4] Amics Diakha Madina Blog
- [5] Tsunami Aid Watch & Heinrich Boell Foundation: Renewable Energy Options on the Islands in Andaman Sea, page 52, Figure 39

Federal Ministry for Economic Affairs and Energy

