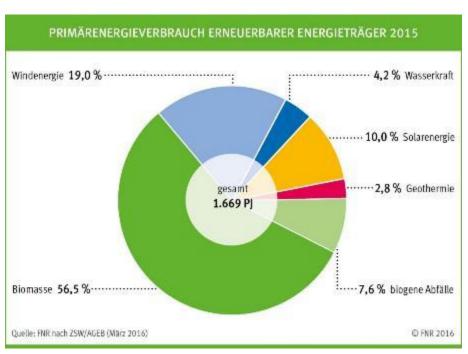
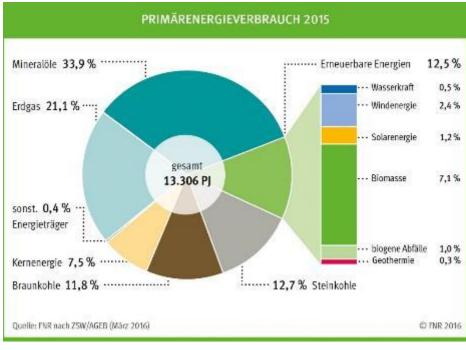


Biogas Market in Germany and its Main Drivers

Content

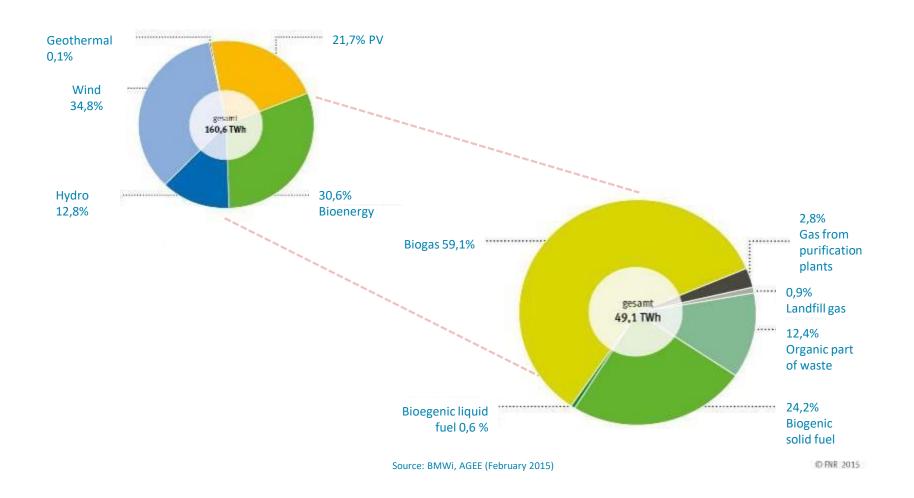
- The German Energy transition
- Biogas in Germany and Europe
- Political success factors
- Future role for biogas
- Biogas market players in Germany
- Technical success factors
- Conclusion


Reasons for the energy transition in Germany

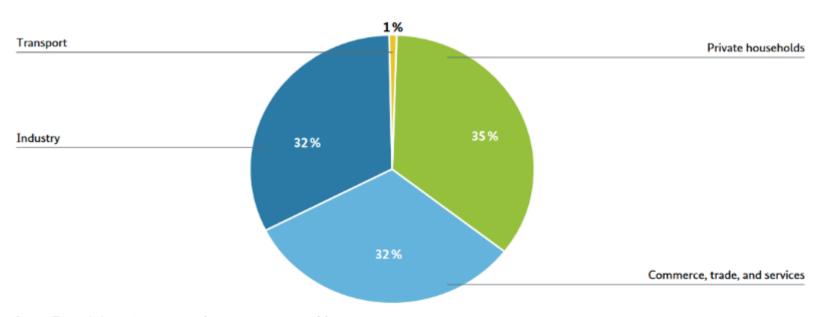


- Climate and environmental protection
- Sustainable development of energy production
- Reduction of costs for German national economy by incorporating long-term external effects
- Conservation of fossil resources
- Independency from imports of fossil fuels
- In the long term costs for fossil fuels will rise; "fuel costs" for RE are for free or will
 probably decrease
- Technology development
- Creation of employment, especially in rural areas
- Development of new markets and sales

Primary energy generation in Germany

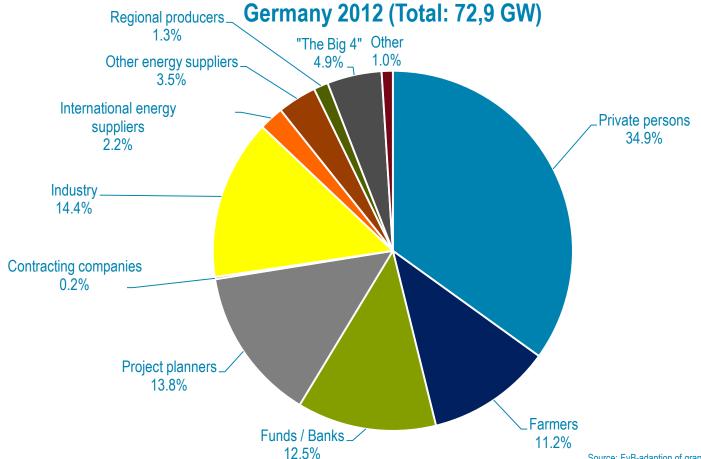


Gross electricity production from RE in 2014



Market players in the German energy transition

Financial contribution according to end consumer group

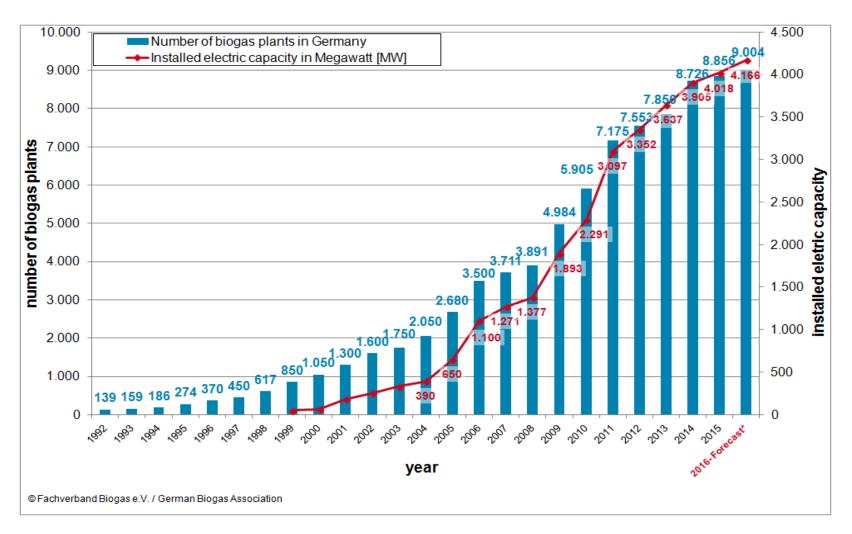


Source: Transmission system operators (www.netztransparenz.de)

Market players in the German energy transition

Structured Renewable Energy according to Group of Owners in

Source: FvB-adaption of graphic from trend:research 2013

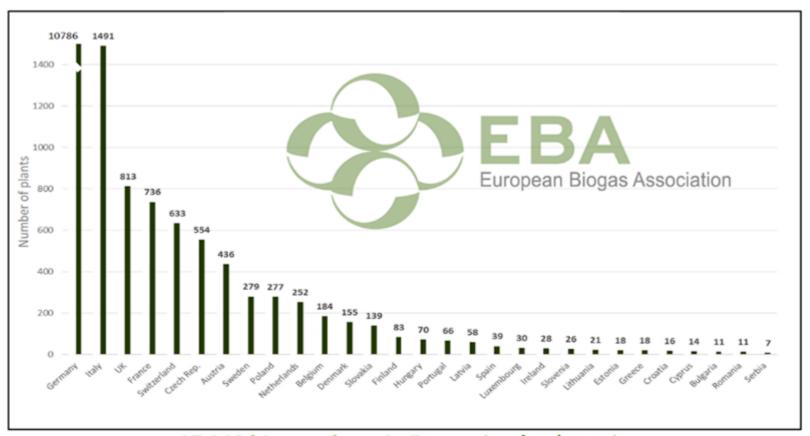

Reasons to support biogas in Germany

- Biogas reduces greenhouse gas emissions
 - Avoidance of uncontrolled methane emissions by manure storage
 - Substitution of fossil fuels
 - Substitution of mineral fertilizer
- Biodiversity can be enhanced
- Local employment (40.000 jobs in Germany)
- Business creation (9 billion EUR turnover in Germany)
- Technology development, Germany is biogas market leader
- Biogas produces a fertilizer of high value
- During the biogas process the material is sanitized
 - Seeds deactivated
 - Potential pathogen microorganisms reduced
- Due to the biogas process odor (smell) is reduced

Biogas in Germany - number of plants and installed capacity

Biogas sector at a glance

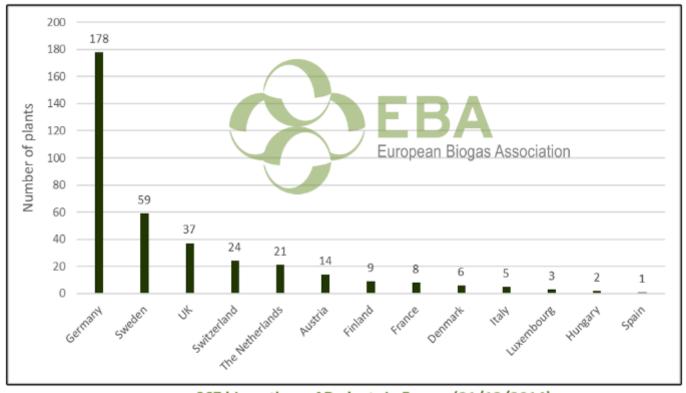
	2014*	2015*	Forecast 2016**		
Number of biogas plants + (biogas plants with biomethane injection)	8.726 + (167)	8.856 + (183)	9.004 + (193)		
Installed electric capacity in MW	3.905	4.018	4.166		
Gross electricity production in TWh per year	28,88	29,38	29,41		
Households supplied with biogas- based electricity in millions	8,3	8,4	8,4		
CO ₂ reduction by biogas in million tons	18,7	19,0	19,1		
Turnover in Germany in Euro	8,4 billion	8,2 billion	8,3 billion		
Jobs in the biogas sector	45.000	42.000	43.000		


[©] Fachverband Biogas e.V. / German Biogas Association

^{*} Own extrapolation based on country data/data from energy supplier

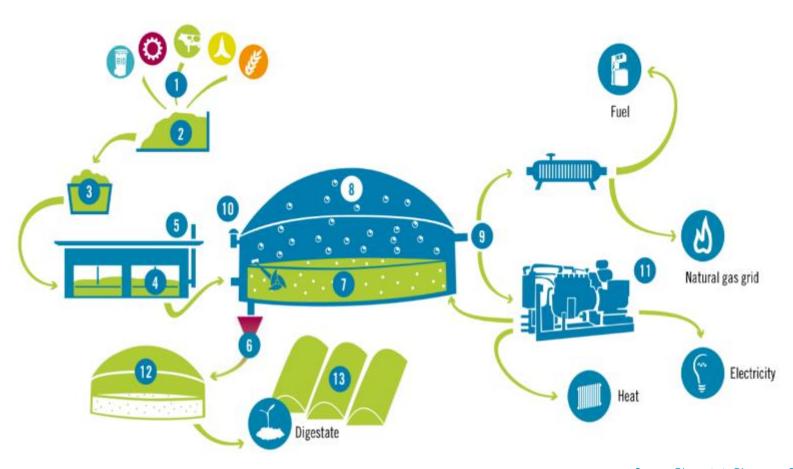
^{**} Based on a expert survey

Biogas plants in Europe



17 240 biogas plants in Europe (31/12/2014)
Total installed capacity of 8 293 MW_{el}

Biomethane plants in Europe



367 biomethane AD plants in Europe (31/12/2014)
Total upgrading capacity 310 thousands m3/h of raw biogas

Biogas production

Source: Biowaste to Bioenergy, FvB, 2016

Political Success factors: German Renewable Energy Act (EEG)

- Priority connection, purchase and transmission for electricity from renewable energy sources
- A consistent fee for this electricity paid by the grid operators for a 20year period

The core elements of the EEG guarantee :

- Mid and long term planning and investment security
- Calculable costs for consumers
- Specific fees for different technologies
- Low bureaucratic effort
- Participation for local and regional players

Development of the Renewable Energy Act EEG (2000-2014)

- Consistent fee for 20 years
- Priority connection
- 250 new plants a year

EEG 2000

EEG 2004

- Bonus for energy crops
- Bonus for using heat
- 450 new plants a year

- Bonus for new techniques
- Bonus for emission reduction
- Bonus for manure
- 1000 new plants a year

EEG 2009

EEG 2012

- New system
- New requirements on efficiency and ecology
- 340 new plants a year

???

EEG 2017

EEG 2014

200 new plants in 2015

Sufficient tariffs for market stimulation? EEG 2009 tariffs!

		<=150 kW	<=500 kW	<= 5 MW		
1.	Basic feed-in tariff	11,67 Cent	9,18 Cent	8,25 Cent		
2.	Bonus for emission reduction	1,0 Cent	1,0 Cent			
3.	Bonus for energy crops	7 Cent	7 Cent	4 Cent		
4.	Bonus for residues from landscape management	2 Cent	2 Cent			
5.	Bonus for manure	4 Cent	4 Cent 1,0 Cent			
6.	Bonus for new techniques	2 Cent	2 Cent	2 Cent		
7.	Bonus for new techniques	2 Cent				
8.	Bonus for using heat	3 Cent	3 Cent	32 Cent		

New "EEG 2017"

System change

- Tender process
- Connection FiT after 20 years of FiT

Exceptions Fixed tariffs

- Existing plants
- 2. Bio waste plants
- 3. Small manure treatment plants

Fixed tariffs

Fixed tariffs
Biomass
§ 42

-	Up to BM	150 kW	13,32 Cent/kWh

-	Up to BM	500 kW	11,49 Cent/kWh
_	Up to BM	5 MW	10,29 Cent/kWh

- **Degression** 1% per year

Fixed tariffs
Biowaste
§ 43

-	Up to BM	500 kW	14,88 Cent/kWh
---	----------	--------	----------------

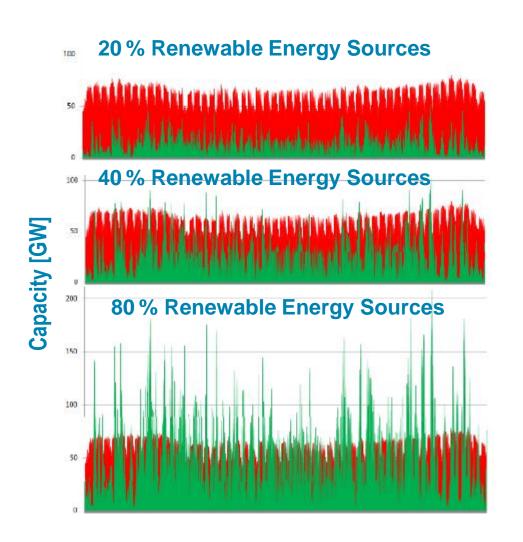
- Up to BM 20 MW 13,05 Cent/ I	/kWh
---------------------------------------	------

- **Degression 1**% per year

Fixed tariffs for small manure treatment biogas plants

Manure treatment biogas plants § 44

- Up to **75 kW_{el}**


23,14 Cent/kWh in der DV

22,94 Cent/kWh in der FV

- Degression 1% per year
- About 150 new installations estimated for 2016

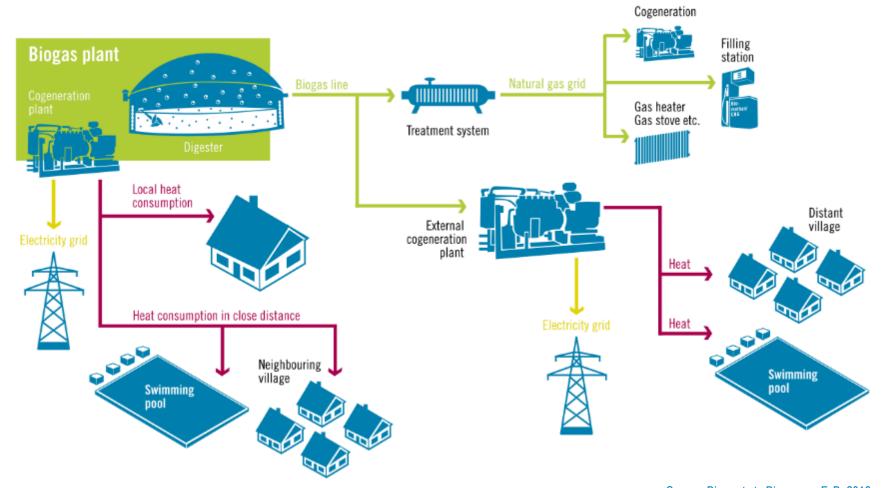
The future role of biogas in electricity production: Flexibility instead of base load

With increasing share of RES, baseload loses importance

Flexible systems fill the valleys of wind and sun

→ CHP with bioenergy & natural gas

→ New role of biogas


red Demand (2010)

green Production Wind

& Solar

Biogas: Energy utilisation

Source: Biowaste to Bioenergy, FvB, 2016

Technical success factors

- A biogas project is only successful if the biogas plant is working
 - Reliably
 - biogas production 8,760 h/a
 - CHP about 8,200 h/a
 - biogas upgrading to biomethane 8,600 h/a
 - Efficiently
 - High gas yields
 - Optimized energy utilization, low parasitic load (el. own consumption below 8%)
 - Optimized reactor load
 - At least for the calculated lifetime of the project
 - Lifetime could be above 20 years
 - 12 years typical
- Investment in robust and reliable technology
- Optimised maintenance are key

Biogas suppliers/manufacturers

- About 600 companies are organized in the GBA
 - Turn key manufacturers
 - Components
 - CHP
 - Agitator
 - Input feeder
 - Gas system
 - Measurement and control system

More information can be found at www.biowaste-to-biogas.org

Matrix overview of the company directory

Company	G	0	Θ	0	8	٥	0	-	0	Page
AAT Abwasser- und Abfalltechnik	Х	Х	X	Х	X	Х	Х			42
BEKON Energy Technologies	Х	Х	X	Х		Х			X	43
BDI - BioEnergy International	Х	Х	X	Х			Х			44
BioConstruct	Х	Х	Х	Х	Х	Х	Х			45
BTA International			X	Х	X		Х			46
Greenline	Х	Х	Х	Х	Х		Х	Х		46
bwe Energiesysteme	Х	Х	Х	Х		Х	Х			47
EISENMANN Anlagenbau	Х	Х	Х	Х		Х	Х	Х		48
GICON Großmann Ingenieur Consult	Х	Х	Х	Х	Х	Х	Х	Х	Х	49
Hitachi Zosen Inova		Х	Х	Х	Х	Х		Х		50
NQ-Anlagentechnik	Х	Х	Х	Х	Х	Х	Х			51
PlanET Biogas Group	Х	Х	Х	Х	Х	Х	Х			51
Rehau Energy Solutions	Х	Х	X	Х	Х		Х			52
Schmack Biogas	Х	Х	X	Х	X	Х	Х		Х	53
Thöni Industriebetriebe	Х	Х	X	Х	Х	Х	Х	Х		54

Biogas experts

- Planners
- Scientific researcher
 - Research institutions, like DBFZ, German Biomass Research Center, Fraunhofer Institutes
 - Universities
 - Laboratories
- Other experts for
 - Planning
 - Due diligences
 - Feasibility studies
 - Environmental impact assessment
 - Life cycle assessment

Aspects about maintenance

- For optimal biogas projects several components must act together optimally
- Each failure might lead to a lower performance
- The main reasons for failures in maintenance work are
 - CHP
 - Stirrers
 - Input feeder
- Biology

• Should never be the reason for failures, if the operation and dimensioning is well done

Components maintenance work

- CHP maintenance
 - Most relevant component for maintenance and repair
 - amount of lost operation time
 - costs for maintenance
 - Costs regular maintenance
 - about 1 ct/kWh for machines above 300 kWe,
 - higher for smaller machines, e.g 2 ct/kWhe for 100 kWe, 3 ct/kWh for 50 kWe
 - After about 2,500 4,000 operation time, small maintenance routine
 - After about 40,000 h, small revision
 - After about 60,000 h (about 8 years), big revision
 - costs: 100 200 €/kW,
 - higher specific costs for machines below 200 kWel, e.g 300 €/kW for 50 kWe

Replacement of whole CHP would be expensive but might not be relevant

Componentes maintenance work

- Stirrer
 - High mechanical stress
 - Robust technology needed
 - High energy demand
 - Replacement expensive, about 20 28% of investment costs
 - → Choose experienced manufacturer and robust technology
- Input feeder
 - High mechanical stress
 - Depending on feedstock
 - The whole process is depending on the input feeder
 - → Choose experienced manufacturer

Replacement of components

- Parts of a biogas plant which must be replaced regularly
 - Pumps, about every 3 6 years
 - Stirrers, about every 3 8 years
 - CHP, after 12 years?

Conclusions: Biogas in Germany

- Biogas is an important part of the German Energy Transition
- Biogas is a storable energy carrier which can be used as
 - Electricity
 - Heat
 - Vehicle fuel
 - Substitute for natural gas
- Actual about 9,000 biogas plant with an installed capacity above 4,000 MWel are in operation
- Experience since decades
- The success of a biogas project mainly depends on reliable biogas operation
- Investment in robust, reliable technology

Trends in developing and emerging countries

- Carbon trade focus on the reduction of methane rather than electricity production
- Decentralized energy solutions driven by industry avoid energy black outs and high costs of importing fossil fuels
- Environmental regulations (waste water, municipal waste, agricultural waste, landfills, etc.)
- Feed in Tariffs / Quotas
- Biogas upgrading to biomethane
- MSW, Agricultural residues, landfill gas, sewage gas, energy crops?

Establishment of national biogas associations!

Thank you for your attention!

