Biogas Association Roundtable Talk, 19th of October 2016, Bangkok

German Biogas Association Association Allemande du Biogaz Asociación Alemana de Biogás www.biogas.org

FvB Biogas Safety Guidelines – Deep Dive Session on Crucial points

 Frank Hofmann
 Biogas can do it

 Consultant International Affairs, Fachverband Biogas e.V., German Biogas Association

Methodology for this session

- Input on:
 - Different topics regarding biogas hazards or characteristics
 - Typical safety measures
- Discussion on how this applies to Thailand

- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Biogas / biomethane composition

	Biogas	Biomethane (natural gas quality)
Methane (CH ₄)	50-75 %	> 97 %
Carbon dioxide (CO ₂)	25-45 %	< 3 %
Oxygen (O ₂)	2-4 %	< 0.5 %
Hydrogen sulfide(H ₂ S)	< 0-6,000 ppm	< 5 ppm

ppm = parts per million = $10^{-6} = 0,000\ 001\ \%$

Dangerous component of biogas

Carbon dioxide (CO₂)

- CO₂: colorless, odorless, heavier than air
- MAC¹ 5000 ppm = 0,5 %; dangerous area above 8 Vol. %
- danger of suffocation

Methane (CH₄)

- methane is colorless, odorless and lighter than air
- danger of suffocation
- explosive range 4,4 % 16,5 %

Oxygen (O₂)

O₂-concentration below 18 Vol.-% is dangerous

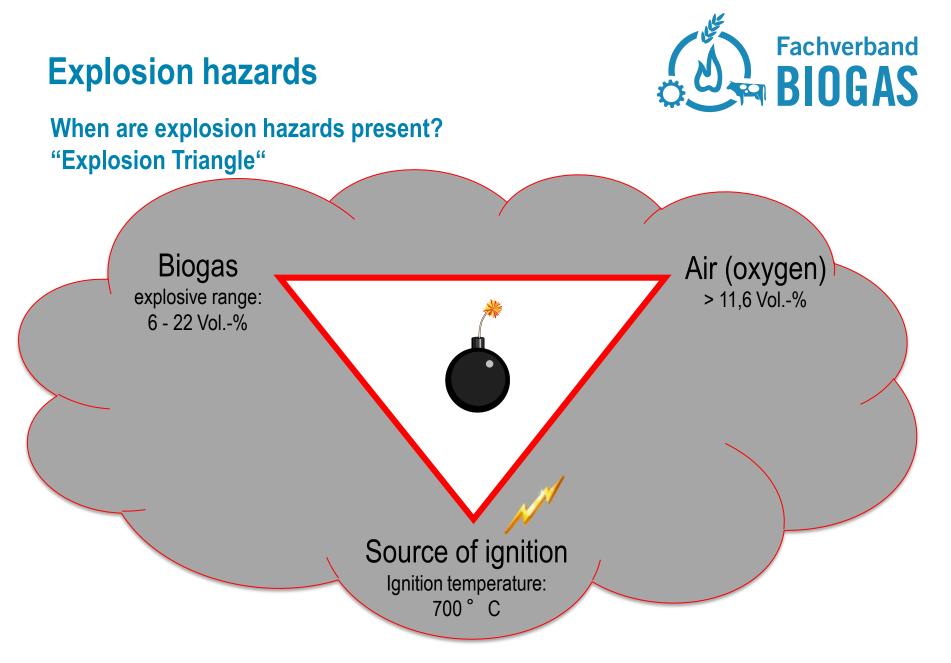
Ammonia (NH₃)

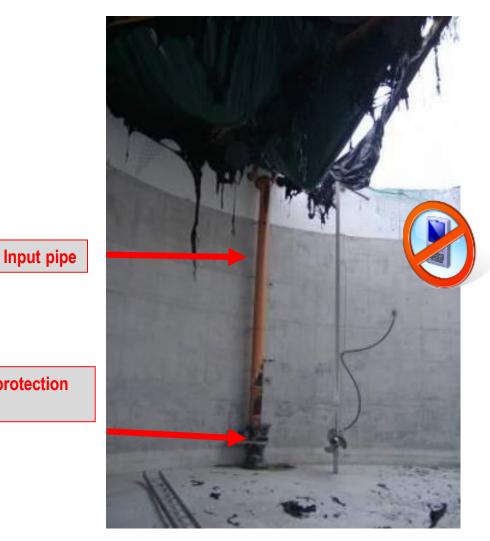
- ammonia is colorless, pungent smelling and lighter than air
- danger of fire 15 % 30 %
- MAC¹ 20 ppm = 0,002 %
- 30 40 ppm = irritation of mucous membranes, respiratory tract and eyes
- 1000 ppm = 0,1 % = difficulty in breathing, unconsciousness

Hydrogen Sulfide (H₂S) :

- H₂S is colorless, smelling like rotten eggs
- heavier than air, strong blood and nerve poison
- MAC¹ 10 ppm = 0,001 %
- 50 ppm 0,005 % = irritation of the respiratory tract
- 200 ppm 0,02 % = paralyzed sense of smell
- -700 ppm 0,07 % = respiratory arrest (death)

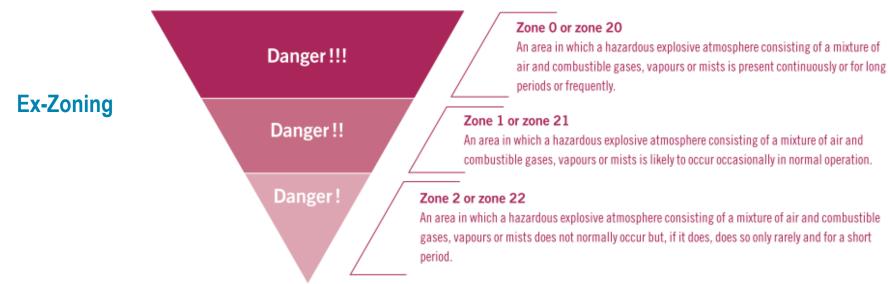
Safety Measures

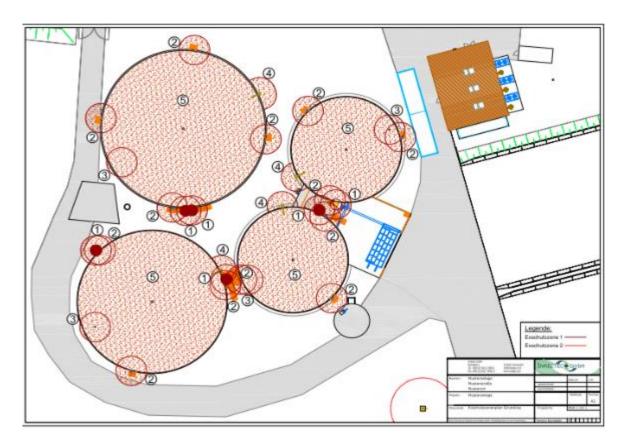

- If the possibility of gas leakage is given, employees should always measure the gas concentrations in the atmosphere with special gas measuring devices.
- The hazardous atmosphere should be diluted by air ventilation
- If working procedures in hazardous atmospheres can not be avoided, employees must wear filter masks and in special cases breathing apparatus


- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Explosion / deflagration

Fire in the control cabinet ► explosion/deflagration in a CHP-building




Prevention of hazards

- Explosion hazards must be determined and assessed. In particular, it must be determined <u>where</u> potentially explosive atmospheres can occur.
- Potentially explosive areas have to be classified into
 Ex-zones = Ex-Zone-Document is necessary for all biogas plants!
- Potentially explosive areas must be identified by appropriate signage.

Example of an Ex-Zone-Plan

- Overpressure and underpressure protection (1
- 2 Wall duct for submersible mixer
- Ĭ Outlet of the membrane gas storage tank
- (4) (5) Blower of the membrane gas storage tank
- Space in between the membranes of the gas storage

- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Hazards from the environment

- Weather-related hazards:
 - Flooding
 - Earthquakes
 - Storms
 - Ice and/or snow
 - Power outage
 - Heavy rainfall

Safety Measures

- Tear-resistant gas storage membrane (for special conditions)
- While planning of the biogas plant take into account the local conditions (e.g. hillside)
- In the case of possible floodings a retaining wall might be appropriate

- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Hazards from inappropiate behavior

- Potential hazards arising from inappropriate behaviour must also be taken into account in the operation of a biogas plant.
- These include, for example:
 - action by unauthorised persons
 - dangers from personnel (operating errors, on-call service not working, deliberate failure to carry out fault rectification measures, sabotage, etc.)

- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Hazard assessment for specific operating states

- It is not appropriate to consider start-up/shut-down or maintenance work on a continuously running biogas plant as normal operation.
- Statistical evaluations of personal injuries at biogas plants reveal a significantly high accident rate in connection with maintenance work and start-up or shut-down procedures.
- These operating states should therefore be considered separately, with their own specific operating instructions.

Hazards during start-up

- Explosive areas may occur inside tanks due to remaining oxygen and first amounts of produced biogas
- Incompletely filled tanks could lead to an uncontrolled escape of biogas
- Feedstock materials which are mixed beforehand can lead to an acid-base-reaction which leads to the production of H2S

. . .

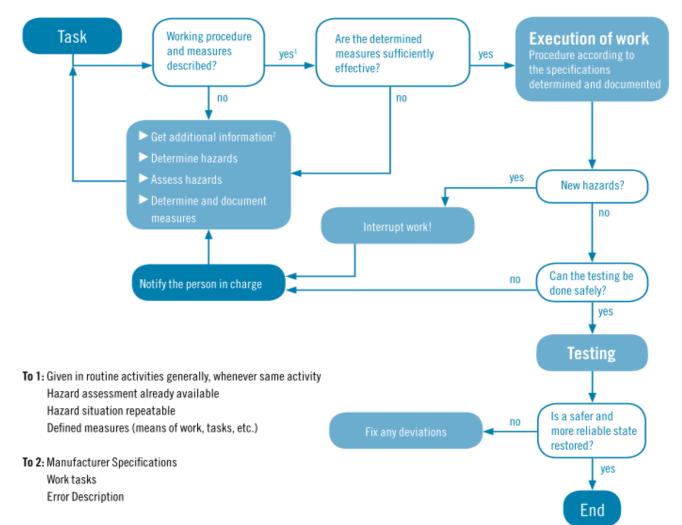
Safety measures during start-up

- Draw up a start-up plan before starting commissioning and to follow it closely.
- Gas pipes must be tested if gas tight. Test: Ensure that pressure holds for defined time
- Make sure all work in the pipework and digester is finished before filling the digester for the first time
- Weigh the feedstock materials properly, if organic loading rate rises too fast the process can quickly become overloaded.
- It should also be noted that during start-up of the plant an explosive gas mixture is temporarily present because of the increase in the proportion of methane in the biogas (with a volume fraction of 6–22% biogas in air!!!).

Hazards during maintenance work

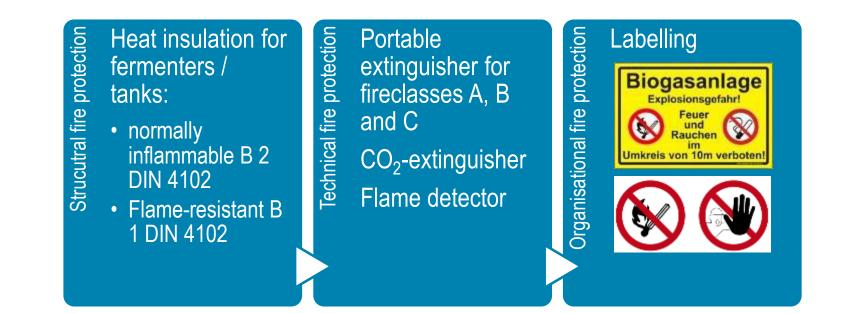
- Lack of qualified (or unexperienced) service companies
- Welding or flexing inside hazardous atmospheres
- Unallowed activating of devices which are out of service for special reasons
- Wrong and non suitable working equipment / tools

. . . .


Safety measures during maintenance work

- Establishing and marking or cordoning off areas where a risk of fire/explosion or a health hazard is to be expected.
- Shutting down electrical and other non-explosion protected systems.
- Removal of biogas from parts of the plant.
- Selection of appropriate explosion-proof equipment and tools.
- Clearance measurement, i.e. the determination of the concentration of hazardous materials or oxygen content using appropriate measuring techniques in a certain area. The purpose of this is to classify the surrounding atmosphere as safe for employees or to initiate further protective measures.
- Use of appropriate personal protective equipment.
- Ensuring adequate ventilation.
- Appointment of a supervisor.

Safety measures during maintenance work



- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Fire prevention concept

- Structural, technical and organisational fire prevention measures should be taken into account when designing and planning a biogas plant.
- Considering specially national guidelines for fire protection.

- Gas hazards
- Explosion and fire hazards
- Sources of danger from the surrounding environment
- Hazards arising from inappropriate behavior
- Special operating conditions
 - Start-up/Comissioning
 - Maintenance and repair work
- Fire protection concepts
- Protective measures

Protective measures

T-O-P Principle

Sequence

Technical protective measures

- Gas warning devices
- Mechanical ventilation
- Protective covers for rotating parts
- Enclosed metering station for process additives

Organisational protective measures

- Work instructions
- Briefing on procedures
- Emergency plans
- On-call service
- Inspections and tests
- Requirements for lone working

Personal protective measures

- Gloves
- Work clothing
- Respiratory protection
- Safety shoes
- Safety glasses

Protective measures: risk assessment

- The focus of a hazard assessment is to protect and to reduce the exposure to risk and hazards of employees.
- The employer must determine, evaluate, and minimize the hazards and must consider the acquired knowledge by
 - the design and selection of work tools
 - as well as the design of workplaces
 - work and production processes
 - work procedures
- When has the risk assessment to be updated?
 - First analysis before start up
 - At regular intervals, in particular: changes to regulations or in the state of the art
 - If facilities are substantially expanded or rebuilt
 - In the case of significant changes in the organization of work
 - After accidents, near-accident and work related diseases

Protective measures

- Safety instructions for entering tanks and pits
 - Clearance measurements of dangerous areas
 - Ventilation of the tank and pit
 - Rescue elevator with safety rope and fall adsorber
 - Personal safety equiqment: portable Ex-Zone and multi-gas detector
 - Portable breathing apparatus
 - Second person outside of the tank/pit for safety measures

Thank you for your attention!

