CBRE, Working group: Bioenergy, Bangkok, 18th October 2016

German Biogas Association Association Allemande du Biogaz Asociación Alemana de Biogás www.biogas.org

Options, structures and examples for biogas self-consumption

Frank Hofmann Consultant International Affairs, German Biogas Association

Community based bioenergy in Thailand

Fachverband BIOGAS

- 3 types of bioenergy available:
- Anaerobic Digestion (biogas) Sources: manure, agriculture residues, industrial residues, organic wastes
- ► Focus of this presentation!
- Solid biomass
 Sources: wood, paper, Municipal Solid Waste (MSW)
- Liquid Biofuels Sources: Oily seeds (biodiesel), starch (bioethanol)

Possibilities for the use of biogas

Size of biogas plants

Biogas plants can be built at nearly any size:

- Domestic biogas plants (domestic digesters):
 - Small volume, from some liter to some m³
 - Low amount of biomass needed; some kg to some ton per day
 - Low biogas production
 - Cheap; some hundred until some thousand €

- Industrial scale biogas plants:
 - Bigger size, high biogas production
 - Electricity generation or bio methane as transportation fuel production
 - Biomass 5 up to 100 ton per day needed
 - Higher investments; some 100 k€ until some M€

Domestic digesters: Example Ökobit

01 Input	Organic waste is fed into HoMethan
02 Manhole	A special gas-tight opening facilitates installation and maintenance
03 Output	The output is a valuable and high quality biofertiliser
04 Agitator	Stirring increases the overall efficiency of the biogas production process

Domestic digesters: Example Ökobit

- Input 200 kg/d
- Manure and agriculture
- residues
- 5 m³/d Biogas
- About 25 30 kWh/d
- Similar to 2 kg/d LPG
- Investment costs 2000 €

Under which conditions might industrial biogas plants be interesting for Thailand?

- Biomass availability
 - High amounts of biomass? Some thousand tones per year
 - Interesting groups:
 - Big farmers: animals (manure), fruits (residues),...
 - Municipal waste: organic fraction, canteens, restaurants,...
- Off grid situations
 - Black outs vs. biogas CHP runs reliable for above 8,000 h/a
 - Conventional electricity production might be expensive in rural areas due to fuels transportation cost and small installations
 - Biogas can be produced locally, no fuel costs only investment (capital costs) and plant operation

Example: municipal waste treatment biogas plants

- Waste treatment is a challenge for each community
- Landfilling or dumping has negative consequences
 - Methane emissions ► Climate change
 - Wash out effects to ground water: heavy metals, nitrate,...
 - Hygienic problems: pathogens on / due to landfills
- Waste can be treated by the following technologies:

Example: municipal waste treatment biogas plants II

- Important issue: Who is responsible?
 - Waste collection
 - Waste treatment, e.g. is dumping allowed?
 - Waste treatment (biogas) plant
 - Digestate / fertilizer quality
- Only the organic fraction of the waste can be digested
 - Option 1: Separation at the source, households
 - Option 2: Technical separation in the biogas plant
 - Magnetic => iron containing materials
 - Blower => plastics, paper
 - Water tank => separation of floating, sinking layers from "diluted" material
 - Sieves: All material which passes the sieve is pumped into the digester
 - Option 3: Dry fermentation, partly feedstock separation

Example: Biogas waste treatment plant in Berlin

- Organic household wastes are collected
- Digested in the biogas plant
- Biogas is produced
- Biogas is upgraded to bio methane quality
- Collection truck fleet is operated with bio methane from the biogas plant
- Nutrients are recycled and spread on the field
 - Liquid fertilizer
 - Compost

Biogas for own consumption?

Domestic biogas is usually used for

- Cooking (some burning hours per day) and
- lightning for
- one or sometimes for more households

Source of the pictures: myclimate.org

Biogas for own consumption?

At industrial scale:

- Production of electricity and heat for own consumption through a CHP
- Electricity
 - Own consumption, reduce the own electricity bill
 - More than own consumption: Share in community, sell or grid connection
- Heat
 - in Germany new biogas plants are obliged to have above 60% of useful heat use!
 - Own heat demand:
 - Warm water,
 - drying processes cereals, wood
 - Sells to
 - industry (process heat), cleaning, sanitation
 - neighbors, hotels, etc.
- Cold, heat, biogas or electricity can be used to generate cold

Biogas for own consumption?

- Biogas to biomethane?
 - Only interesting for high volume rates; high investment needed (M€)
 - Result is (pure) methane which can be used
 - Transportation fuel
 - Compressed biomethane (substitute for CNG); e.g. as bottles 250 bar can substitute LPG, CNG, kerosene in households

Biogas, storage and transportation?

Industrial scale biogas plants

- Biogas production between 30 5,000 m³/h
- Gas storage typically for 4 to 8 hours of production
- Bio methane injected into the gas grid: storable and transportable
- Bio methane in pressurized cylinders (250 bar)
 - Storable
 - Transportable

Conclusions

- The energy transition in Germany shows that RE can be the basis for energy production within a decade
- Biogas is flexible, storable and can be used for various purposes:
 - Electricity
 - Heat
 - Transportation fuel
 - Substitution for fossil energy, like natural gas, LPG, kerosene
- Biogas in Thailand
 - Domestic biogas: Availability for many persons but low energy production
 - Industrial scale: If biomass is available, electricity or transportation fuel production

Information material

biogas.org

german-biogas-industry.com

Information material

Biowaste to Biogas

<u>http://biowaste-to-biogas.com/</u>

Biogas knowledge compact

 <u>http://www.biogas.org/edcom/webfvb.nsf/id/DE_P</u> roduktuebersicht/\$file/Biogas%20Wissen_eng.pdf

"Biogas an all-rounder"

• http://www.german-biogas-industry.com/

Thank you for your attention!

