ILF Consulting Engineers (Asia) Ltd.

3rd Thai-German Community-based Renewable Energy Conference 2018

Frank Zimmermann, Bangkok 8rd February 2018

3rd Community-based Renewable Energy Conference 2018 Frank Zimmermann - Biography

Dipl.-Ing. MBA Frank Zimmermann

Education:

1997 – 2002

Sales: Wholesale and Consumer Sales- and Project engineer Export Manager, Fürth, de

Managing Director, Singapore, sg

Export Manager, Wuxi, cn

Managing, Haslach i.K., de

2002 – 2005

2005 - 2009

Suntech

Since 2014

Business Development Manager South East Asia for Renewable Energies, Senior Project Manager Photovoltaics of ILF Asia based in Bangkok, th

Sachverständiger für Photovoltaik (TÜV) Certified Expert for Photovoltaic Equipment (TUV)

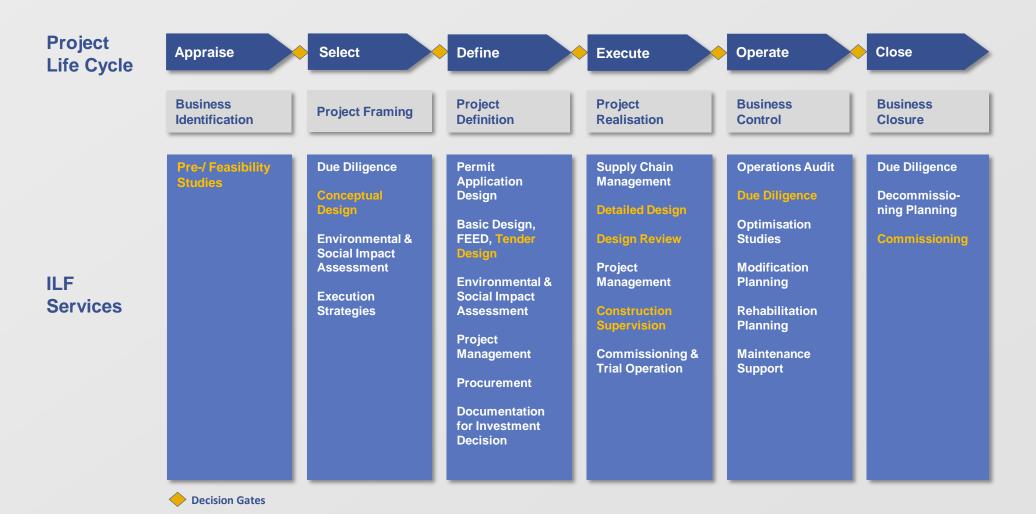
3rd Community-based Renewable Energy Conference 2018 ILF at a Glance

50 2,000 100

Years of experience

Employees worldwide % family owned

OIL & GAS


ILF Asia

- Regional presence for ASEAN in Bangkok, Thailand
- Core competencies : Renewable energy and hydropower

3rd Community-based Renewable Energy Conference 2018 ILF Group

Service Portfolio

3rd Thai-German Community-based Renewable Energy Conference, Bangkok 2018

INTRODUCTION

3rd Community-based Renewable Energy Conference 2018 Introduction

Group introduction

- Who are you?
 - Community Members / Community Leaders
 - Business Owners
 - Farmers
 - Developers
 - Entrepreneurs
 - Technician
 - Politician
- Where are you from?
 - North / East / South / West / Abroad
 - Remote Locations / Islands
- What is your industrial areas / types
- What is your background?
- What do you expect from this seminar?

3rd Thai-German Community-based Renewable Energy Conference, Bangkok 2018

BASIC KNOWLEDGE

Power VS Energy

MEA

http://www.mas.or.lh., MEA Coll.conter.1135 สือผู้ใช้ไฟฟ้า (Marna) สถาวที่ใช้ไฟฟ้า (Propriate)	Provincia การ ชื่อ นายสมมูดิน
นักสินสองสัญญา ระโดงครื่องว่า มสม (24463984 95179687 78350562 00782673145	รหัสการไฟฟ้า สายจ
วับที่จดเรขอาน Meter Reading Dette) 24/04/55 09:36 (Last Major Reading) (President Meter Reading 1459 1449	 (₱€A Code) (№ G08101 GRS รหัสเครื่องวัด ปะ
าาสระเทียดกัไฟฟ้า (Desorption) สารมริยานไฟฟ้า 58.23 สามมิคาก 58.22 สามมิคาก 58.22 สามมิคาก 58.23 สามมิคาก 58.23 สามมิคาก 58.23 สามมิคาก 58.24 สามมิคาก 58.2	(PEA No.) 5700622483 02 รายละเอียดการใช้ (Dogo Cu เลขตรังหลัง เลา (Recent Reading) (Prev 1516.000 12
ดำให้หัวการกำระเพียงเรม 0 เป็น 0.00 รามบริเมษิตอะสารระบัยโปร (Amount) 1,717.85 ไม่รถชำระเบิดก็มะเร่าไห้ (Amount) 1,717.85 ไม่รถชำระเบิดก็มะเร่าไห้ (Jue Date) 25/04/59 - 10/05/59 v13.3 r0157 กละสอระบิดก็มะเร่าไห้ (Jue Date) 25/04/59 - 20/05/59 v13.3 r0157 กละสอระบิดก็มะเร่าไห้ (Jue Date) 25/04/59 - 20/05/59 v13.3 r0157 กละสอระบิดก็มะเร่าไห้ (Jue Date) 24/02/59 v10/59	WM Version 1. ด่าหลังงานไฟฟ้า ด่าบริการรายเดือน ด่า Ft-0.0480 บาม ส่วนลด รวมเริ่มค่าไฟฟ้าเดือา รวมเริ่มต่าไฟฟ้าเดือา รวมเริ่มท ี่ต้องร ั

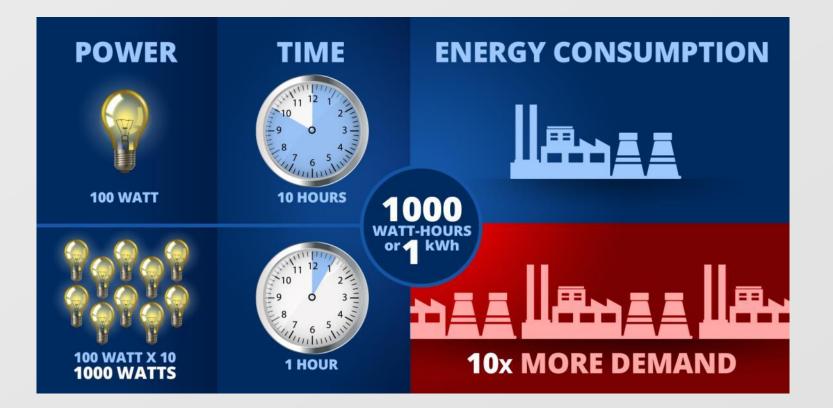
PEA

ข้อ นายสม	ovincial Electricity การไฟฟ้ารังเ มุติ นามทดสอบ	y Authority ជិត J	เจ้งค่าไม 025168657-	
หัสการไฟฟ้า HEA Code) G08101 หัสเครื่องวัด	สายจุดหน่วย (MRU) GRST0181 User No. ป	บ อุลกา จ.ปทุมธานี 1 หมายเลขผู้ใช้ไฟฟ้า (CA/Ref. NO. 1) 020019320090 ระเภท วัน-เวลาอ่า	เลขที่ไบเ (invice No./F 000022098 นหน่วย ประ	Ref No.2 363 ะจำเดือน
(PEA No.) 700622483		/	ng Data) (Bil 3:59:19 0 4 น ประวัติเ	4/2559
เลขครั้งหลัง Recent Reading) 1516.000	เลขครั้งก่อน (Previous Reading 1284.000	จำนวนที่ใช้ 0.000 (Consumption) กว. 232.000 หน่วย	(Date) 16/03/59 14/02/59 16/01/59 16/12/58 15/11/58 16/10/58	หน่วย (Unit) 215 148 129 169 145 141
ค่าพลังงานไท ค่าบริการราย		1	1719) 5.13 8.19 1.14	_

Electricity bill per month = (kWh) × (electricity price per kWh)

What is kWh?

Power VS Energy



$13 \text{ W} \times 3 \text{ hrs} = 39 \text{ Wh} = 0.039 \text{ kWh}$

Power VS Energy

Power x Time = Energy Consumption

What is hybridization?

What to hybridize:

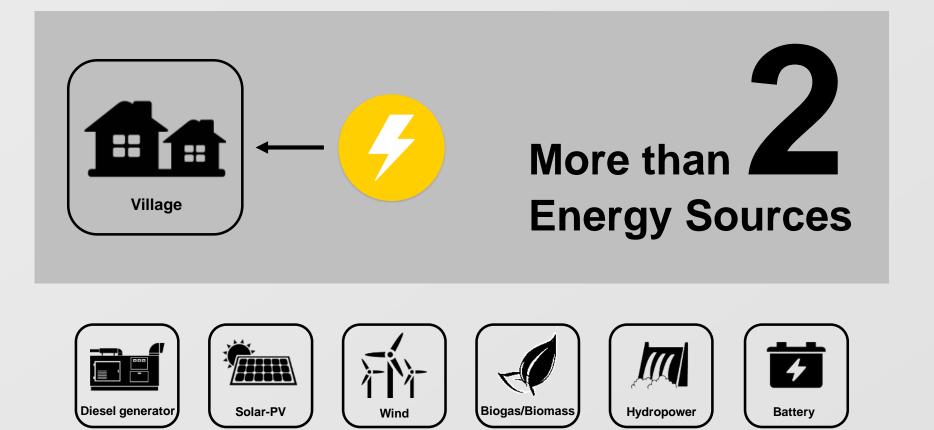
- Diesel
- Gas
- Heavy fuel oil
- Waste-to-energy
- Biomass-to-energy

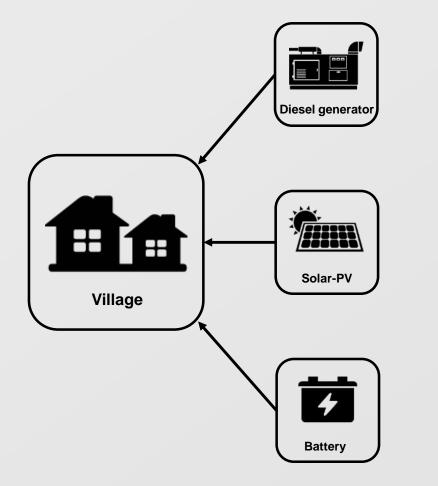
Hybrid system types:

- Stand-alone (islands)
- Mini-grid
- Micro-grid
- Remote grid

How to hybridize:

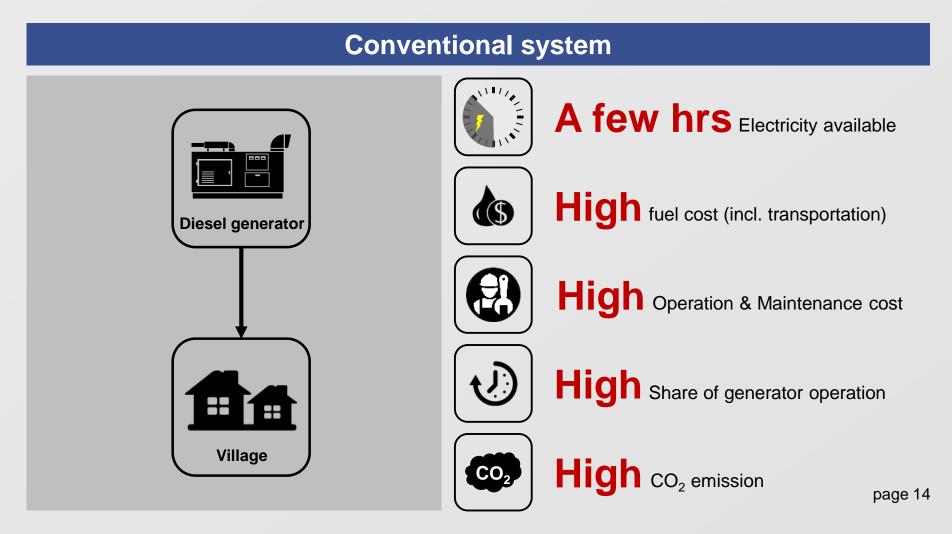
- Photovoltaic (PV)
- Wind
- Hydro power
- Battery





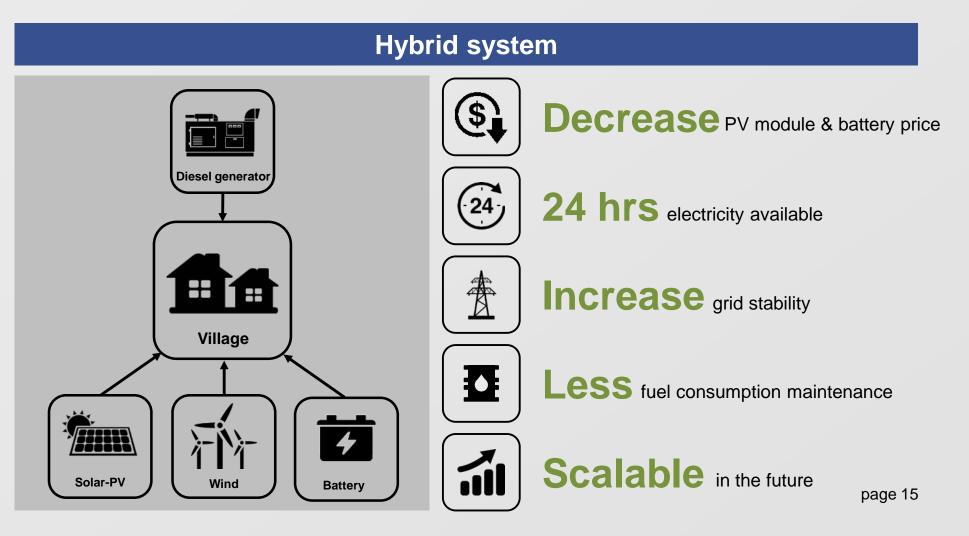
Hybrid system components

Hybrid system components (example)


Generate electricity from fossil fuel

Generate electricity from sun's light

 Store the electricity produced by either solar or diesel generator



Why a hybrid system?

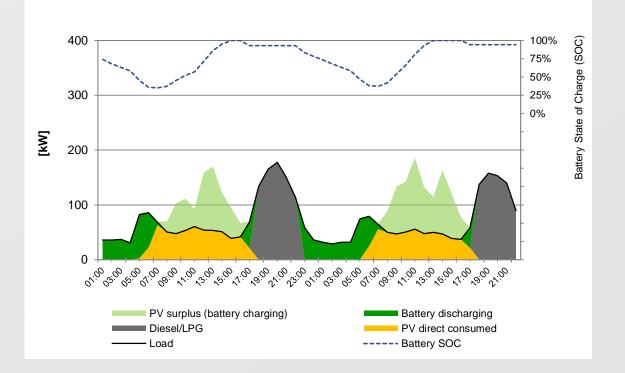
Why a hybrid system?

Exercise

Flipchart-Exercise

- How much do you pay for your electricity bill per month?
- How many kWh do you use per month?
- What is the price of electricity per kWh?
- How many appliance do you have?
- How long / what time each appliances do you use?

Exercise

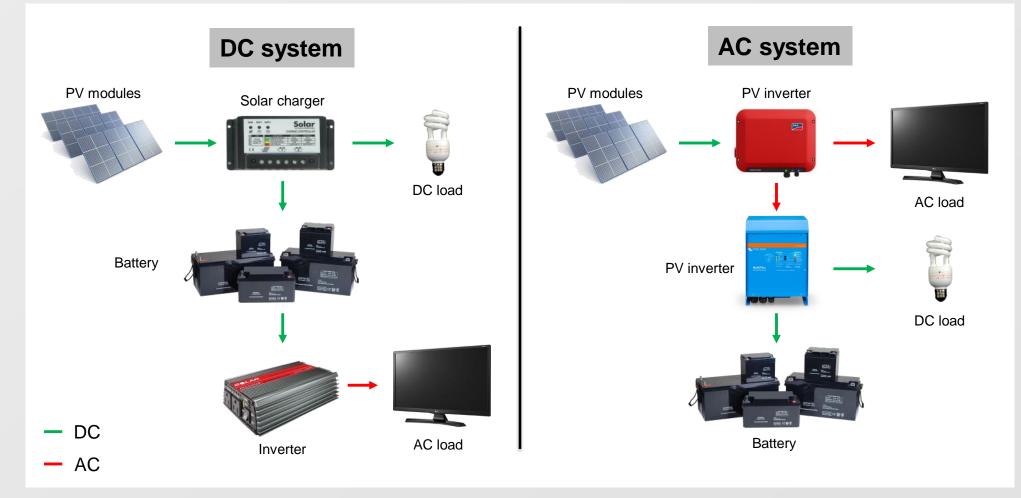

Flipchart-Exercise

Appliance	Number	Power	Hours of utilization per day
TV	1	25	4
Light bulb	3	10	4
Fan	1	70	3
Air conditioner	1	1,200	6

How much energy consumption per day? Answer: 7.63 kWh

How the hybrid system works

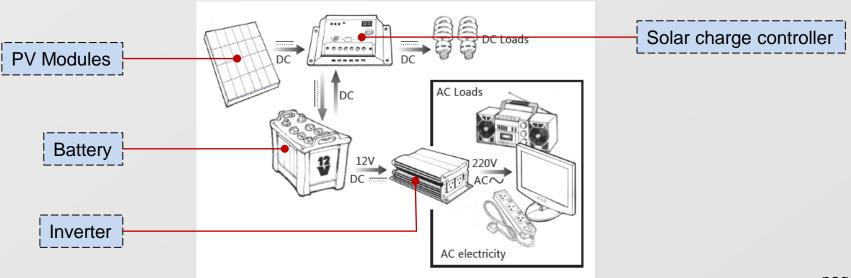
Q&A



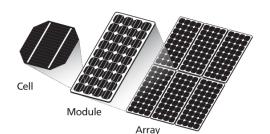
3rd Thai-German Community-based Renewable Energy Conference, Bangkok 2018

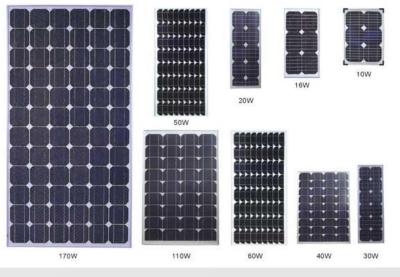
SIZING & OPTIMIZATION

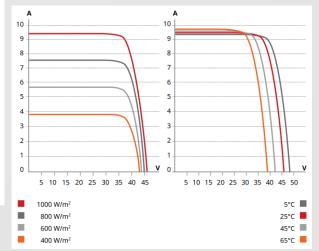
Solar Home System – DC system VS AC system



Simple examples to understand sizing in-principle (Solar Home System)

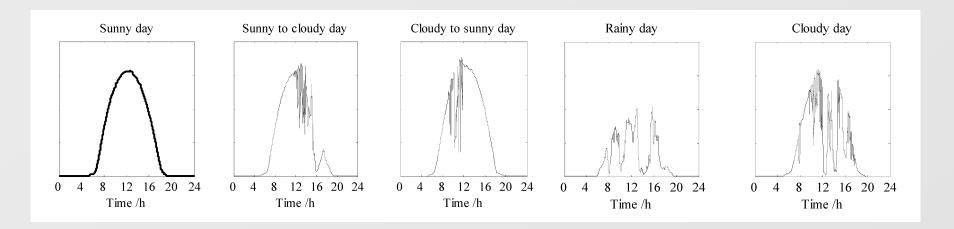

Appliance	Number	Power	Hours of utilization per day
TV	1	25	6
Light bulb	3	10	8
Fan	1	70	5


Energy consumption 740 Wh/day

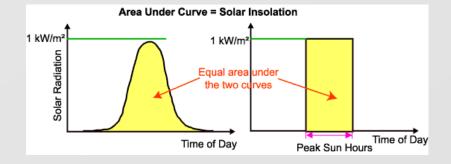

PV module

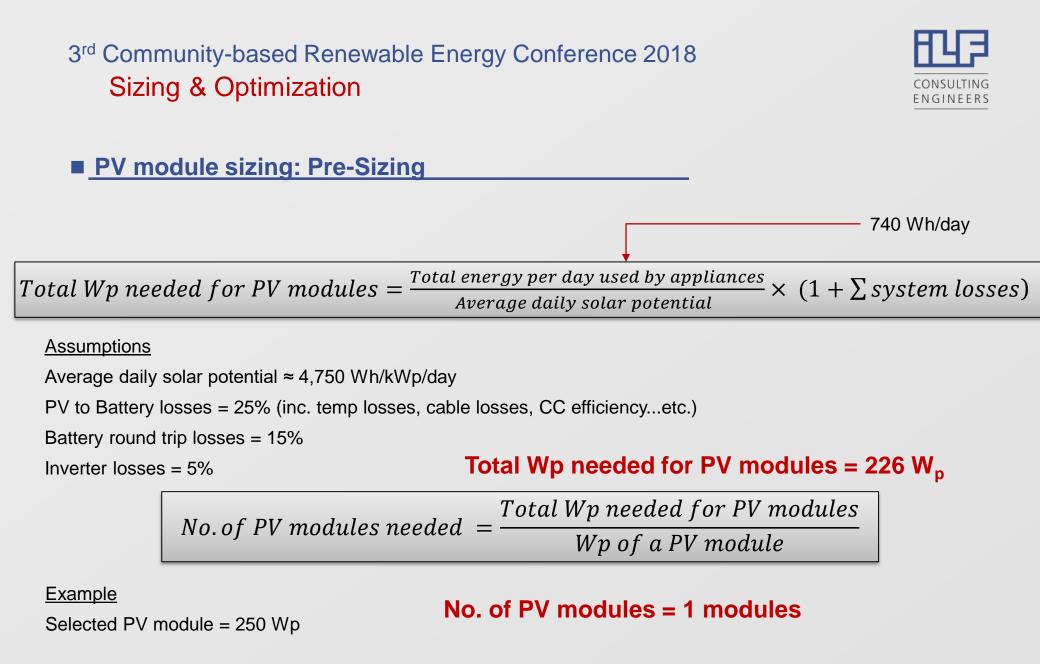
CS6P	260P	265P	270P
Nominal Max. Power (Pmax)	260 W	265 W	270 W
Opt. Operating Voltage (Vmp)	30.4 V	30.6 V	30.8 V
Opt. Operating Current (Imp)	8.56 A	8.66 A	8.75 A
Open Circuit Voltage (Voc)	37.5 V	37.7 V	37.9 V
Short Circuit Current (Isc)	9.12 A	9.23 A	9.32 A
Module Efficiency	16.16%	16.47%	16.79%
Operating Temperature	-40°C ~ +	85°C	
Max. System Voltage	1000 V (I	E <mark>C)</mark> or 100	00 V (UL)
Module Fire Performance	TYPE 1 (U	IL 1703) c	or
	CLASS C	IEC 6173	0)
Max. Series Fuse Rating	15 A		
Application Classification	Class A		
Power Tolerance	0 ~ + 5 W		

* Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.


Standard Test Conditions

- Irradiance 1,000 W/m²
- Vertical (right angle) sun-angle
- Cell temperature 25°C
 - AM1.5


٠



Understanding solar insolation

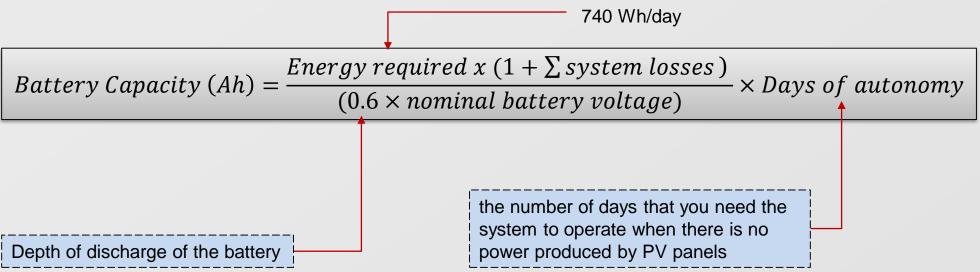
In Thailand, the average daily solar insolation is equivalent to ~3.8 hrs/day (at 1,000 W/m²) (depends on the climate of the site location)

■ Battery

Storage of energy

Lead-acid / Lead gel

- Bulky
- Frequent inspection
- Cheaper



Lithium-ion

- Light weight
- Higher roundtrip efficiency
- High Depth of Discharge (DOD)
- Longer lifetime
- More expensive

Example

Nominal battery voltage = 24 V

Days of autonomy = 2 days

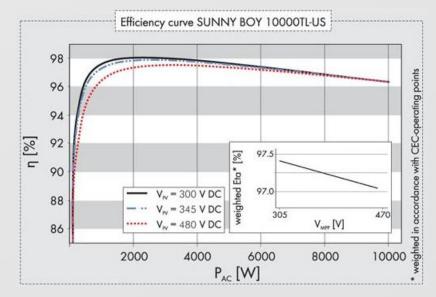
Battery Capacity =
$$\frac{1,073}{(0.6 \times 24)} \times 2 = 149 Ah$$

Charge controller sizing: Pre-Sizing

- The sizing of controller depends on the **total PV input current** which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).
- According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.1

Example

PV module configuration:	Single m	odule	Charge Controller Specification
PV module specification:	Pm =	250 Wp	Nominal PV power, 24V = 290 W
	Voc =	37.2 V	Max. PV open circuit voltage = 75V
	Isc =	8.87A	Max. PV short circuit current = 12A



Inverter

Convert DC to AC

Inverter sizing: Pre-Sizing

- The inverter must be large enough to handle the total amount of Power you will be using at one time.
- The inverter size should be **25-30% bigger** than total Power of appliances.
- In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting

Example

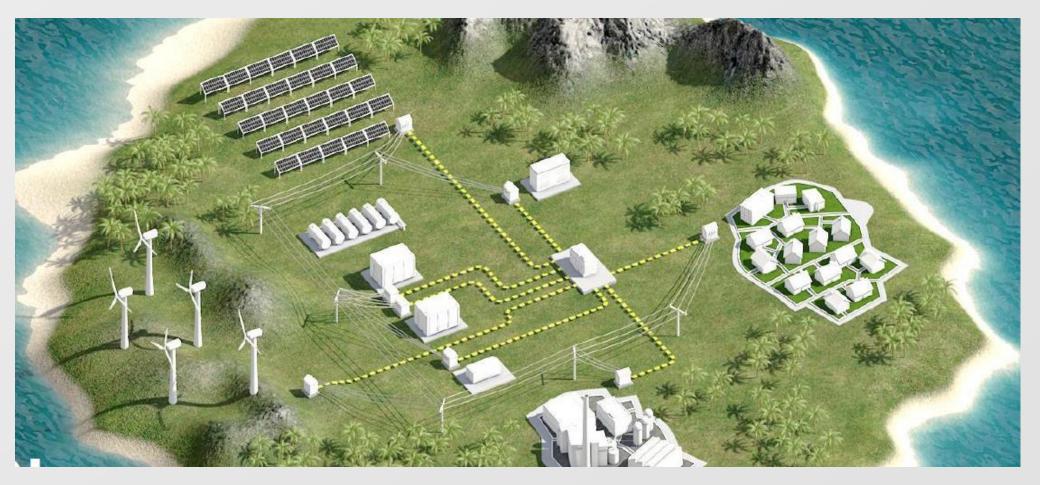
Total Power of all appliances = $25 + (3 \times 10) + 70 = 125$ W

The inverter size should be about **160 W** (25-30% bigger).

AC bus system

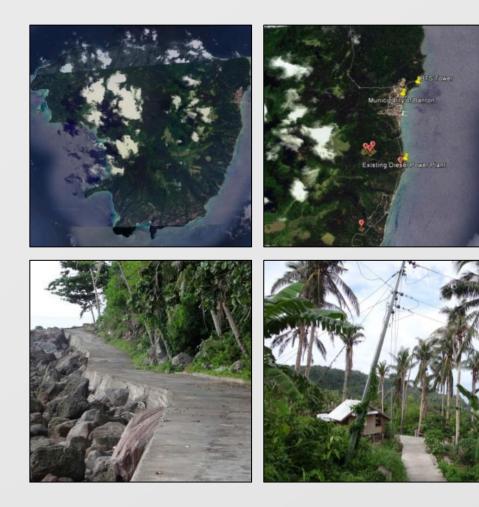
<u>https://www.sma.de/en/sunbelt.html</u>

Q&A


3rd Thai-German Community-based Renewable Energy Conference, Bangkok 2018

EXAMPLE: HYBRIDIZATION OF AN ISLAND

3rd Community-based Renewable Energy Conference 2018 Hybridization of an Island


Hybrid Islands / Mini Grids - Introduction

3rd Community-based Renewable Energy Conference 2018 Hybridization of an Island

Design process (Mini-grid) – Project introduction

Island overview		
Location	Central Philippines	
Population	1,500 households (6,000 inhabitants)	
3 electricity customer groups	Residential Commercial others (public building, street light)	
Number of customer connections	1,500 households (100% energized)	
Main income source	Fishery Coconut farming	
Average income	3,040 THB/month	
Typical appliances	Fan, Water boiler, Freezer, Lighting, Mobile phone	

3rd Community-based Renewable Energy Conference 2018 Hybridization of an Island

Design process (Mini-grid) – Project methodology

- 1. Prior to site visit
 - Current situation review
 - Available data and Socio-Economic background review
- 2. Site visit
 - Data gathering
 - Suitable areas for hybrid system
- 3. Data acquisition and analysis
- 4. Load Profile forecasting
- 5. Hybrid system simulation

Design process (Mini-grid) – Project methodology

1. Prior to site visit

Current situation

8 hrs/day electricity available

diesel generators

Available data and Socio-Economic background review

Data	Unit	2010	2011	2012	2013	2014	2015
Residential	No.	1,195	1,247	1,299	1,351	1,331	1,380
Residential	MWh	203.74	201.08	193.42	179.61	166.55	172.54
Commercial	No.	19	19	18	17	42	44
Commercial	MWh	12.39	12.23	11.76	10.92	28.98	30.02
Others	No.	0	0	0	0	47	49
(Public buildings and street light)	MWh	0	0	0	0	14.44	14.96
Total number of customers connections	No.	1,214	1,266	1,317	1,368	1,420	1,473
Total energy sales (EC to customers)	MWh	216.13	213.31	205.18	190.53	209.97	217.52
Total distribution losses	%	n. a.	n. a.	n. a.	18.48%	15.62%	13.38%

Design process (Mini-grid) – Project methodology

2. Site visit, Data gathering, Suitable areas

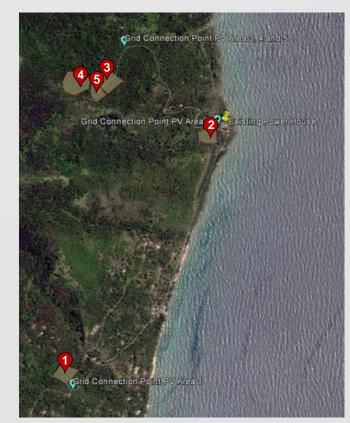
Site visit

Design process (Mini-grid) – Project methodology

2. Site visit, Data gathering, Suitable areas

<u>Data</u> gathering

Hourly power output very important



Socio-economic data very important

- Population growth potential
- Typical energy consumption per household
- etc.

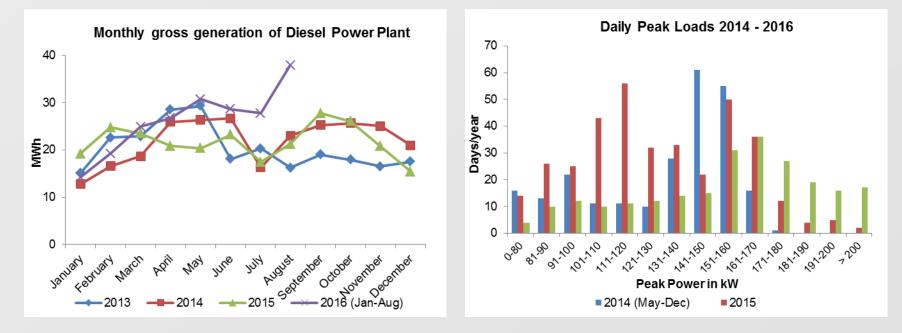
other

- Actual load measurement
- Total energy measurement
- Daily fuel consumption
- Actual generation costs per kWh
- Possible areas for the hybrid system
- Collection of the SLD of the island distribution system
- Information of meter specifications

Suitable areas for hybrid system

Design process (Mini-grid) – Project methodology

- Where should we put the hybrid system?
 - Not too far from the village
 - PV/battery/diesel generator shall be in the same area
 - ✓ No flood area
 - ✓ Flat area



3rd Community-based Renewable Energy Conference 2018 Hybridization of an IslandSizing & Optimization

Design process (Mini-grid) – Project methodology

3. Data acquisition and analysis

Data analysis

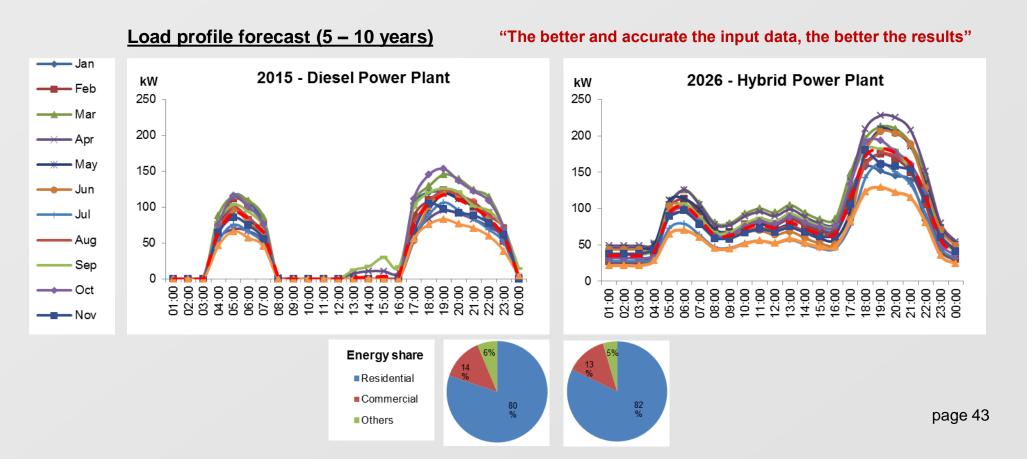
Design process (Mini-grid) – Project methodology

3. Data acquisition and analysis

Residentials were categorized according to the socio-economics into:

- · Low, middle and high incomers
- · For each of them with assumptions for
 - spendings on electricity
 - · Additional appliances (for power and energy forecast)
 - Potential growth (population and energy consumption)

	Data	Unit	2015 (BASE)	2017	2021	2026	Gross g	generation of Hybrid power		
- [Residential	No.	1,380	1,464	1,648	1,910	Ê	plant		
		MWh	172.54	325.13	411.86	553.51	1,000	2,5	lections	
		No.	44	46	50	55	u 800 -	- 2,0	00 6	
	Commercial	MWh	30.02	54.67	67.92	89.09	deneration (MMh) - 008 (MMh) - 009 - 009 - 009	- 1,5	00 5	
	Others (Public buildings and street light)	No.	49	49	50	52	uang 400 -	- 1,0	00 a	
		MWh	14.96	25.78	27.92	30.83	200 -	- 500) n	
	Total number of customer connections	No.	1,473	1,559	1,748	2,017	0 +		Total Numb	
-	Gross generation Hybrid Power Plan (including distribution loss)	^t MWh	260.69	466.19	583.57	774.06		se) Gross generation Hybrid Power Plant Total number of customer connections		


Data analysis

The customer can be categorized by 3 types: 1) Residential, 2) Commercial, 3) Others (based on the electricity consumption behavior or load profile shape)

Design process (Mini-grid) – Project methodology

4. Load Profile forecasting

Design process (Mini-grid) – Project methodology

5. Hybrid system simulation

General input in the simulation consisted of:

- 1. Load profile (hourly resolution)
- 2. Selected technologies and their technical parameters
- 3. Weather data (hourly resolution)
- 4. Consumption curves of the generator
- 5. Costs of each component
- 6. Financial parameters of each technology (CAPEX, OPEX, etc.)

The overall target of the simulation:

- Provides electricity sustainable over 24 hrs / 7 days
- 2. Has a high renewable energy share
- 3. Ensures reliable and sustainable energy supply
- 4. Is capable to be expanded
- 5. Is optimized technically and economically (acc. to LCOE)
- 6. Is capable and sized sufficiently for at least 10 years

Design process (Mini-grid) – Project result

401555.52 m E 401466.17 m E 1430636.32 m N

PV power plant layout

- Total capacity:
- Module type:
- Inverter type:
- 300 kWp polycrystalline string inverter

- - Technology: Li-ion
 - Total capacity: 700 kWh
 - Usable total battery capacity (SOC_{min} 10%): 630 kWh

Battery

Total capacity: 3x150 kW

Design process (Mini-grid) – Project result

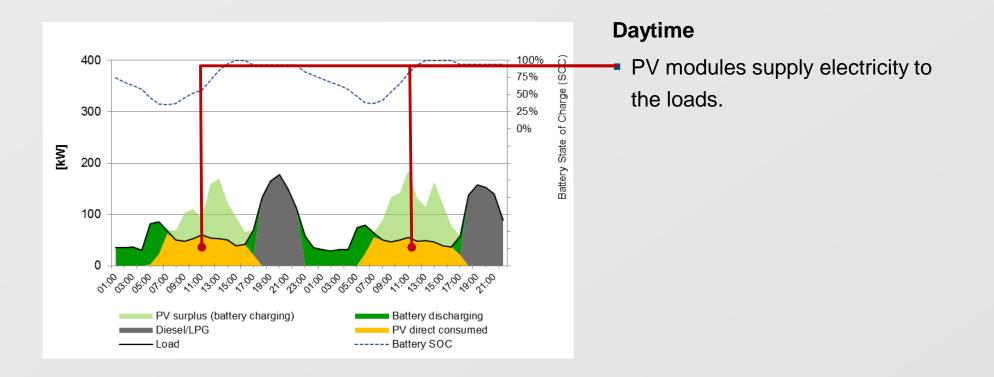
Simulation Output

Diesel / PV / Battery Hybrid System	Unit	2017	2021	2026
Total energy production/demand	kWh/a	457,097	572,186	758,964
Total diesel consumption	l/a	49,322	72,845	117,641
Reduction diesel consumption (compared to diesel reference scenario)	l/a	109,422	110,287	109,930
Renewable fraction (PV and battery)	%	62	56	46
Excess PV energy	%	32	23	15
Diesel operating hours	h/a	1,890	2,839	4,529
CO ₂ emission	t/a	130	192	311
Reduction of CO ₂ emission	t/a	289	291	290

Design process (Mini-grid) – Financial

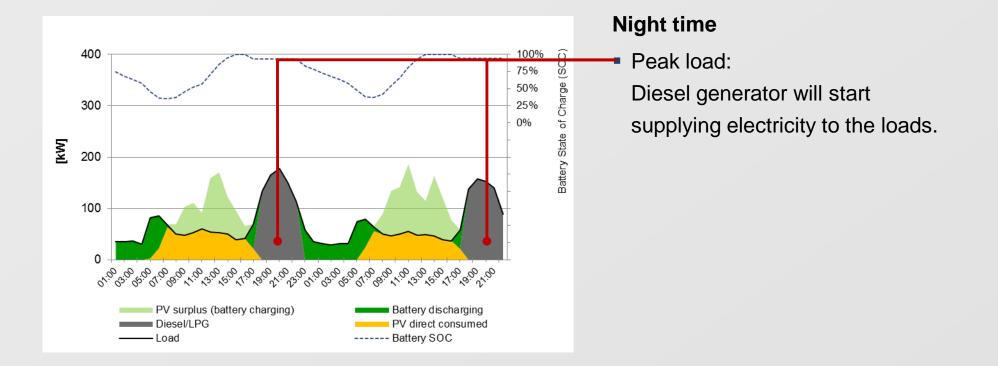
Initial CAPEX		OPEX - PV		OPEX - Diesel		OPEX – Battery Storage	
Diesel	4,233,330 THB	Replacement costs string inverters	3,770 THB/kWp	Replacement costs (30% of initial CAPEX)	3,140 THB/kW	System	
PV	12,234,300 THB	Number of inverter replacements over 1		Number of replacements over project lifetime	2	Replacement costs battery cells and battery inverter(s) in year 2032	
Battery	19,763,100 THB	lifetime		Resulting replacement		(based on future estimated Li-ion cell	7,058,250 THB
Total 36,232,350 THB		Resulting inverter replacement costs linear	47,055 THB/a	costs linear over project lifetime	94,110 THB/a	price in year 2030 according Bloomberg	1,000,200 mb
		over project lifetime (year 6 - 30)		O&M costs (labor costs and lube oil)		New Energy Finance: ~250 USD/kWh)	
		General O&M costs	313 THB/kWp/a	Basis: average 2013-	3.33 THB/kWh	General O&M costs	125,480 THB/a
		Resulting general O&M costs linear over project lifetime	94,110 THB/a	2016 on the Island		(annual inspections)	

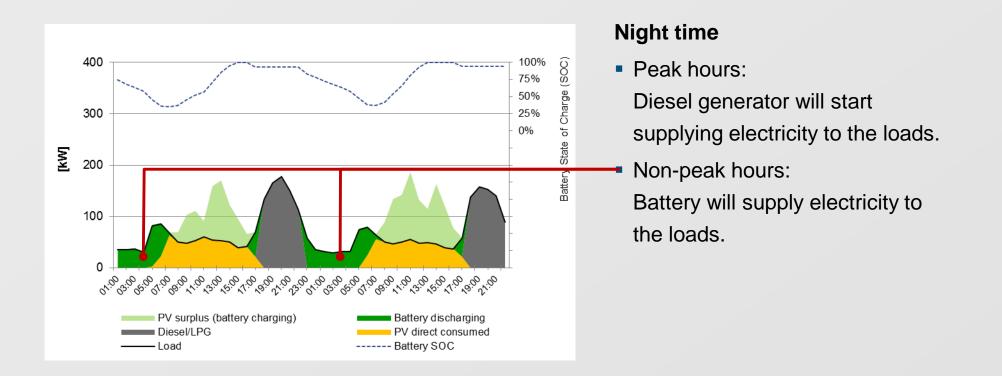
Parameter	LCOE [THB/kWh]	Reduction (reference scenario: 100% Diesel)
Reference scenario: 100% Diesel	22.15	reference
Diesel/PV/Battery hybrid system	18.07	-18.35%

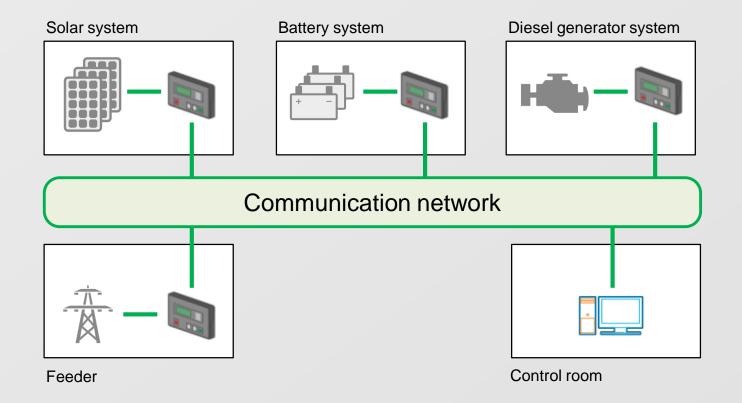

Q&A

3rd Thai-German Community-based Renewable Energy Conference, Bangkok 2018

OPERATION & MAINTENANCE







Interaction/communication of system components

Each component need to communicate

Electricity meter functions and payment systems

Post-paid meter

- Cheaper system
- Not complicated system
- Do not need to spare a card in case of broken card or new customer

Pre-paid meter

- Customers pay for their electricity before they use
- Customers can monitor their usage and control against their budget
- Operator do not need to collect the money themselves

System maintenance – PV module

- To maintain the PV modules, the followings shall be done:
 - PV modules shall be cleaned
 - No grass / trees
 - No debris / bird droppings / leaves on the PV modules
 - Screws / terminals / connections inspection

System maintenance – Battery

• To maintain the battery, the followings shall be done:

Lead-acid battery

- Maintain a proper fluid level between "maximum" and "minimum" by using distilled water
- The top of the battery and connections should be clean
- Leakage inspection

Lithium-ion battery

- Keep the battery at room temperature (25°C)
- 100% DOD shall be avoided

- To maintain the inverter, the followings shall be done:
 - Electrical characteristic inspection
 - Corrosion of terminals and connections inspection
 - Clean / replace the filter (if any)

System maintenance – Cable

- To maintain the cables, the followings shall be done:
 - Regularly, measure the current (I) and the grounding
 - Damaged wire inspection

Lifetime and replacement of components

• Lifetime could be up to 30 years

Estimated: 15 years

- Depends on the environmental condition, e.g. temperature
- Estimated: average 10 years (at 25°C)

- Depends on engine type / the operating hours
- Estimated: 20,000 80,000 hours

How community gets involved in hybrid system

- During the takeover period, the community shall be trained
- This can create the full-time job for local people

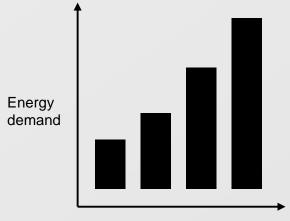
Example

3rd Thai-German Community-based Renewable Energy Conference, Bangkok 2018

MONITORING & UPSCALING

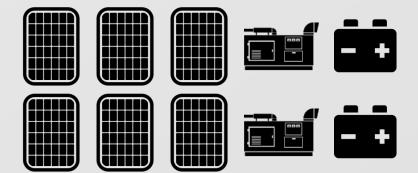
3rd Community-based Renewable Energy Conference 2018 Monitoring & Upscaling

Upscaling possibilities


What if the hotels are constructed on the island (2x energy demand)

What can we do?

3rd Community-based Renewable Energy Conference 2018 Monitoring & Upscaling



Upscaling possibilities

Time

Q&A

ILF Consulting Engineers (Asia) Ltd. Thank you for your attention !

When your Vision becomes a Mission – Your Business will become a Movement.

Authorized Director ILF Asia Business Line Manager SE Asia Senior Project Manager

> **ILF Consulting Engineers (Asia) Ltd.** 699 Modernform Tower, 22nd Floor, Srinagarindra Road, Suanluang, Bangkok 10250 Thailand

www.ilf.com frank.zimmermann@ilf.com

+66 990 801222

