Life Cycle Costing (LCC)

Basic principles, applications and implications for GPP

Siddharth Prakash

Regional Capacity Building on the application of LCA and LCC in Public Procurement, Advancing and Measuring Sustainable Consumption and Production (SCP) for a Low-Carbon Economy in Middle-Income and Newly Industrialized Countries (Advance SCP) in Southeast Asia

Port Dickson, Malaysia, 15.11.2016 – 17.11.2016

ビ Öko-Institut e.V.

Set using this methodology, consumers are able to compare and evaluate alternative products and assess their economic viability.

www.oeko.de

Limitations of Societal LCC for use in procurement

- § Too complex to be applicable on a daily basis à Enormous data requirements and uncertainties à Decisions based on such analysis can be challenged legally
- S Monetary valuation of environmental impacts depend strongly upon ethical choices in different cultures & regions, e.g. valuation of lost life years in different regions of the world
- **§** There are no market prices which represent the value of environment
- S Environmental impacts are often uncertain, and impacts of today's activities on the environment are not always known at the deepest level of detail.
- S Decision of the evaluation of damages which occur in the future are very uncertain

LCC for public procurement departments

Example – Laser Printers

	unit	Printer A	Printer B		
Life time	years	5	5		
Purchase					
Purchase costs	Euro	549	641		
Use phase					
Energy demand	kWh/a	190	145		
Paper demand	Sheet/a	37.500	37.500		
Toner demand	Cartridge/a	6	4		
Electricity costs (EU 27)	Euro/kWh	0,1837	0,1837		
Paper costs	Euro/Sheet	0,012	0,012		
Toner costs	Euro/cartridge	133	133		
Life cycle costs					
Purchase costs	Euro/life time	549	641		
Electricity costs	Euro/life time	174,52	133,18		
Paper costs	Euro/life time	2.250	2.250		
Toner costs	Euro/life time	3.990	2.660		
Life cycle costs	Euro/life time	6.963,52 ∉ life time	5.684,18 ∉ I ife time		

Example – Laser Printers

Calculation of Payback times – Laser Printer

Example – Refrigerator

Product	Energy efficiency class	Capacity (fridge/ freezer) I	Price	Life time (years)	Energy costs per year
Conventional	A+	221/94	682€	14	94 €
Energy efficient	A+++	211/92	849€	14	44 €

Calculation of Payback times – Refrigerator

Example – Lighting

	Watt	Price	Life time (years)	Energy costs/ year
60 W light bulb	60	0,50€	10	104,00€
Energy saving lamp	13	4,00€	10	13,00 €
LED	12	10,00€	20	2,00 €

Calculation of Payback times - Lighting

Cumulative total costs over 25 years and the respective defined planning horizon

Calculating LCC with different models

Static Modelling vs Dynamic Modelling

Static Life Cycle Cost (LCC) - Analysis

Ø The time points of the accrual of costs and savings don't play a role

Life Cycle Cost Analysis (LCC-A) Dynamic Life Cycle Cost (LCC) - Analysis Time points of the accrual of costs and savings play a role € **Operational costs** over life time: Ø e.g. electricity costs over 4 years End-of life costs Ø e.g. Recycling costs after 4th **Up-front costs**: year

Ø e.g. purchasing ______
price of a new appliance 0 1 2 3 4

vears

Dynamic Life Cycle Cost (LCC) - Analysis

Dynamic Life Cycle Cost (LCC) - Analysis

Dynamic Life Cycle Cost (LCC) - Analysis

Ø Time points of the accrual of costs and savings play a role

Dynamic Life Cycle Cost (LCC) - Analysis

Conclusions on the use of modelling approach

- § Both models have distinct advantages & disadvantages
- S As increasing energy prices & discount rates balance each, we recommend to apply the static modelling for simplification reasons
- In case, any of the dynamic variable (e.g. energy prices) are expected to change dramatically, it is better to use the dynamic model

Conclusions

- § Energy efficient appliances are usually more expensive in comparison to equivalent conventional appliances
- **§** But: their operating costs are often lower
- Solution Operating costs are usually not known to consumers and they are not included in the purchase decision
- § LCC can be used to put higher purchasing prices/ lower operating costs into a realistic perspective

Thank you for your attention!

Do you have any questions?

Contact

Siddharth Prakash

Senior Researcher

Öko-Institut e.V. Telefon: +49 761 45295-244 E-Mail: s.prakash@oeko.de

Florian Antony Researcher

Öko-Institut e.V. Phone: +49 761 45295-260 E-Mail: f.antony@oeko.de