

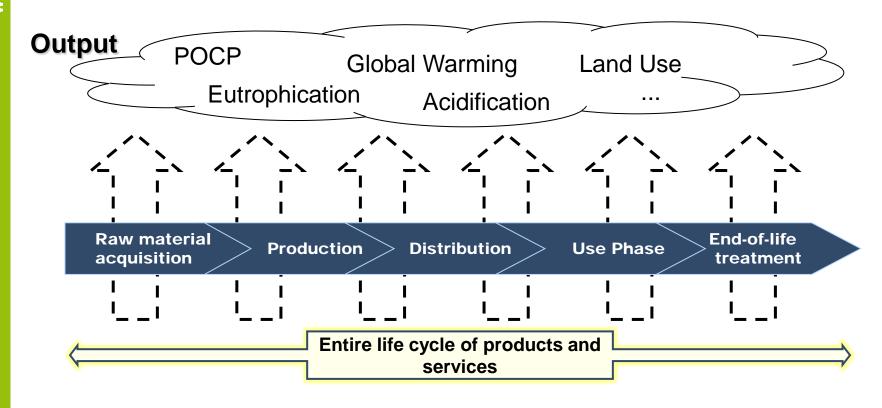
Life Cycle Assessment (LCA)

Basic principles, applications and implications for GPP/GGP

Florian Antony

Regional Capacity Building on the application of LCA and LCC in Public Procurement, Advancing and Measuring Sustainable Consumption and Production (SCP) for a Low-Carbon Economy in Middle-Income and Newly Industrialized Countries (Advance SCP) in Southeast Asia

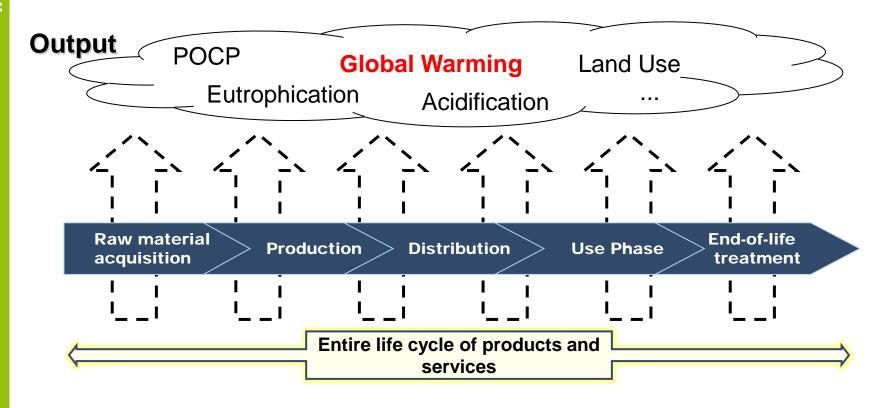
Port Dickson, Malaysia, 15.11.2016 - 17.11.2016



Overview

- About LCA
- Methodological approach
- 3 Examples
- A Recommendations and applications for GPP
- 5 Conclusions

Background of an LCA


Input crude oil iron ore, crops...

electricity, petrol,

electricity,

packaging, dismantling

Background of an LCA

Input crude oil iron ore, crops...

electricity, petrol,

electricity,

packaging, dismantling

Definition LCA

Which environment al burdens?

Which life cycle phase?

See Assessment of all environmental burdens which are connected to the entire life cycle of a certain product

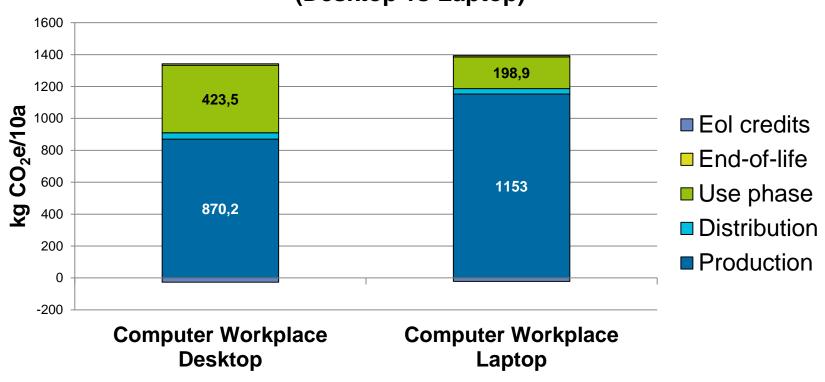
Which actor?

- The environmental burdens are directly covered by one or more actors within this life cycle.
- § By using this methodology, consumers are able to compare and evaluate alternative products and assess their ecological viability.

LCA can assist in...

- § identifying opportunities to improve the environmental performance of products at various points in their life cycle,
- § informing decision-makers in industry, government or nongovernment organizations (e.g. for the purpose of strategic planning, priority setting, product or process design or redesign),
- \$ the selection of relevant indicators of environmental performance, including measurement techniques, and
- § marketing (e.g. implementing an ecolabelling scheme, making an environmental claim, or producing an environmental product declaration).

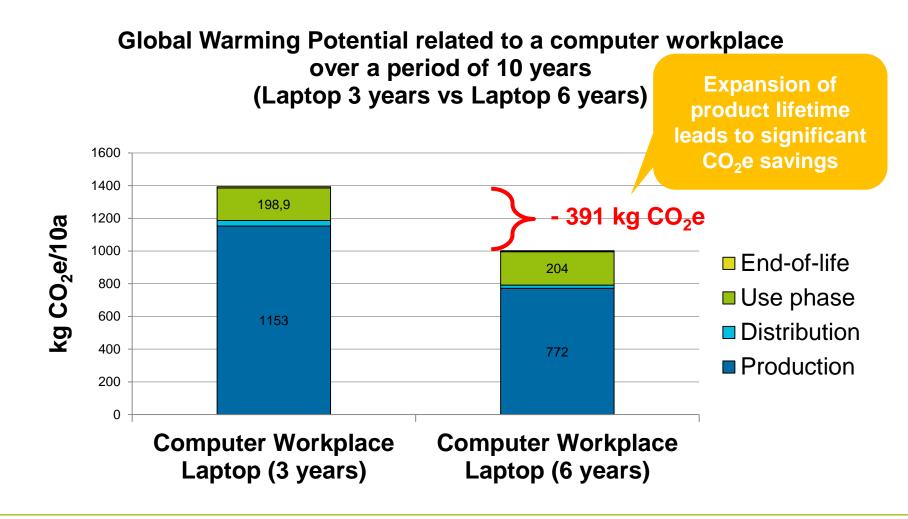
LCA can assist in...


- § identifying opportunities to improve the environmental performance of products at various points in their life cycle,
- § informing decision-makers in industry, government or nongovernment organizations (e.g. for the purpose of strategic planning, priority setting, product or process design or redesign),
- \$ the selection of relevant indicators of environmental performance, including measurement techniques, and
- § marketing (e.g. implementing an ecolabelling scheme, making an environmental claim, or producing an environmental product declaration).

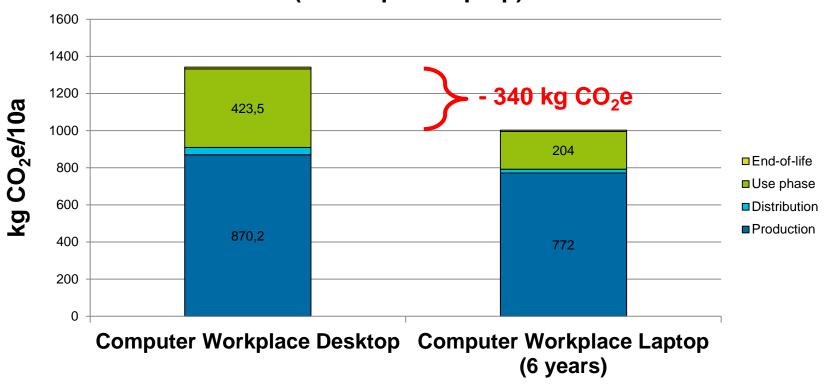
Example – Computer Workplace (Desktop vs Laptop)

	unit	Desktop	Laptop			
Period under review	years	10	10			
Product life time	years	5	3			
Products per period under review	piece	2	3,33			
Purchase						
Production (embedded emissions)	kg CO ₂ e/10 years	870,2	1.153			
Distribution (embedded emissions)	kg CO ₂ e/10 years	39,4	33,7			
Use phase						
Energy demand	kWh/10 years	636,8	298,9			
Emission factor (electricity embedded emissions*)	kg CO₂e/kWh	0,665	0,665			
Emissions in use phase	kg CO ₂ e/10 years	423,5	198,8			
End of life						
End of life treatment	kg CO ₂ e/10 years	9,6	8,1			
Recycling credits	kg CO ₂ e/10 years	-27,0	-22,0			
Sum	kg CO ₂ e/10 years	1316	1372			

Example – Desktop-PCs vs Notebooks


Global Warming Potential related to a computer workplace over a period of 10 years (Desktop vs Laptop)

Example – Computer Workplace (Desktop vs Laptop)


	unit	Laptop	Laptop		
Period under review	years	10	10		
Product life time	years	3	6		
Products per period under review	piece	3.33	1,67		
Purchase					
Production (embedded emissions)	kg CO ₂ e/10 years	1,153	772		
Distribution (embedded emissions)	kg CO ₂ e/10 years	33.7	20.1		
Use phase					
Emissions in use phase	kg CO ₂ e/10 years	198.8	204.0		
End of life					
End of life treatment	kg CO ₂ e/10 years	8.1	6.3		
Sum	kg CO ₂ e/10 years	1394	1003		

Example – Desktop-PCs vs Notebooks

Example – Desktop-PCs vs Notebooks

Global Warming Potential related to a computer workplace over a period of 10 years (Desktop vs Laptop)

LCA for public procurement departments

Life Cycle Assessments

Acquisition

- § Embedded environmental burdens through production
- § Environmental burdens through delivery and installation, if required

Use

- § Environmental burdens through operation:
 - § Electricity
 - § Water
 - §
 - § Maintenance
 - § Repair
 - § Etc.

Disposal

- § Environmental burdens through EoL-Treatment:
 - § Collection
 - § Recycling
 - § Disposal

Key challenges for application of LCA

- § LCA must rely on sufficient data / data basis
 - data availability
 - data quality assurance
 - Second a compilation of data is the most time-consuming part of a full scale LCA-project
- § LCA needs experts (skills and maybe digital infrastructure)
 - Skilled staff / external consultants
 - Software tools / access to databases (some of which proprietary)
- LCA results need carefull interpretation

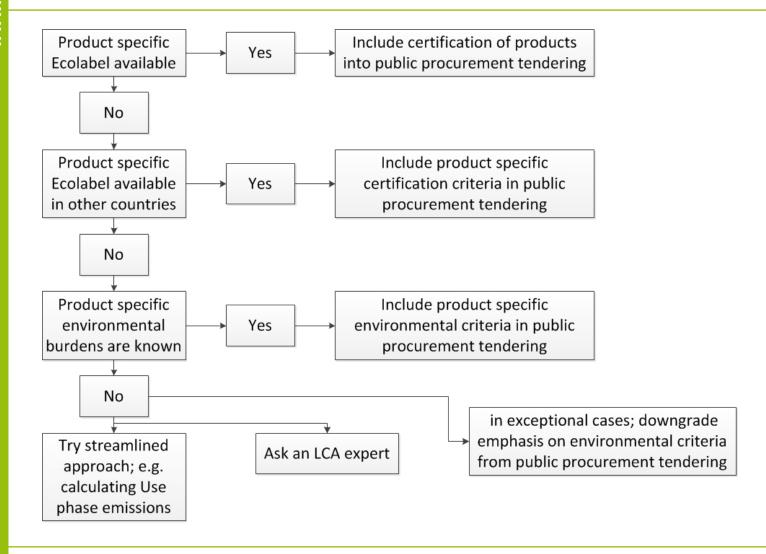
Limitations of LCA for use in procurement

- § Too complex to be applicable on a daily basis
 - § Enormous data requirements and uncertainties
 - Secisions based on single analyses can be challenged legally
- § Evaluation/interpretation depend strongly upon value choices
 - e.g. estimation of relevant parameters (e.g. product life time, crediting for recycling)
- § Applicable and well-proven LCA results do not exist for all products
- § Environmental impacts are often uncertain.

Recommendations for action

- Search for LCA-studies on products you want to purchase; but always make sure that the studies' results are applicable in your special context.
- § Ecolabel use findings from LCA studies to define product specific eco-performance criteria
- If you have any concerns on the applicability of LCA results you should use ecolabel certification criteria.

Ecolabels can help in GPP


- S Developing environmental criteria for tendering
 - § Independent ecolabels provide excellent source for finding criteria
 - § Environmental criteria underpinning independent ecolabels have been based on solid scientific evidence and in co-operation with relevant stakeholders.
- Verifying the environmental performance of products
 - § As long as environmental criteria set in the tendering are the same (or less ambitious) than those defined in an ecolabel, and the product carries this ecolabel, this is a simple and reliable way for the procurer to check compliance.
 - If the products don't have an ecolabel, make sure that the tenderer provides reliable proof of compliance.

Recommendations for action

- There exists a toolkit for GPP priority product groups, including GPP criteria for:
 - Cleaning products and services
 - Construction
 - Copying and Graphic paper
 - Electricity
 - Food and Catering services
 - Furniture
 - Gardening products and services
 - Office IT equipment
 - Textiles
 - Transport

Available online via URL: http://ec.europa.eu/environment/g pp/toolkit_en.htm

Decision tree

Conclusions on the use of LCA in GPP

- \$ LCA results maybe used for informing decision-makers in GPP
- § Applicable and well-proven LCA results do not exist for all products relevant for procurement
- § The (direct) costs of conducting product specific LCAs are rather high
- § Independent ecolabels provide excellent source for developing environmental criteria for tendering.
- Solution
 Also already existing toolkits for GPP maybe used as source for developing environmental criteria for tendering

Thank you for your attention!

Do you have any questions?

Contact

Siddharth Prakash

Senior Researcher

Öko-Institut e.V.

Telefon: +49 761 45295-244 E-Mail: s.prakash@oeko.de

Florian Antony

Researcher

Öko-Institut e.V.

Phone: +49 761 45295-260

E-Mail: f.antony@oeko.de