

of the Federal Republic of Germany

25th July 2012, Bangkok, Thailand

Daniel Colbourne

Agenda

- 1. Description of subsectors and system types
 - -Selection
- 2. Discussion of technical options (TOs)
 - Initial filtering and selected TOs
 - Reducing energy consumption
- 3. Implications and barriers of TOs
- 4. Overview of costs
- 5. Penetration potential of TOs in specific subsectors

1. Subsectors

- Many different uses of refrigerants
- Important to reduce down to manageable categories
- Main sectors: Refrigeration; Air conditioning; (Foams)
- Initially divide system types, then categorise into subsectors where evaluation of TOs is similar
 - Not practicable to evaluate TOs for each and every miniscule system type
- Neglect certain subsectors
 - -Small market (minimal refrigerant use)
 - -Complicate, non-uniform types of systems

1. Subsectors

• Unitary air conditioning

Portable units				
Window units	Self-contained air conditioners			
Through-wall units				
Single split units (condensing unit)	Split residential air conditioners			
Mini-split units (condensing unit)	Split commercial air conditioners			
Multi-split/VRF (centralised)	Multi-splits			
Rooftop ducted (integral)	Rooftop ducted			
Central ducted splits (condensing unit)	Duct split residential air conditioners Commercial ducted splits			

1. Subsectors

Chillers

Positive displacement chillers (air-cooled)		Air conditioning chillers
Positive displacement chillers (water-cooled)	Chillers	Process chillers
Centrifugal chillers		
		Accounted for under

industrial/food processing

1. Subsectors

Mobile air conditioning

	Car air conditioning	
		Bus AC
Mobile AC	Large vehicle air	Truck AC
	conditioning	Industrial vehicle AC
		Train AC
	•	/

Relatively small volume, so neglected at this stage

1. Subsectors

Domestic refrigeration

	Fridge/freezers
Domestic refrigeration	Refrigerators
	Freezers

1. Subsectors

- Commercial refrigeration
 - Includes display cabinets , storage cabinets, coldstores

	Stand-alone equipment
Commercial refrigeration	Condensing units
	Centralised systems for supermarkets

1. Subsectors

Industrial refrigeration

Neglected due to vast variety of bespoke systems

Industrial refrigeration

Food industry and warehouses

Centralised systems

Includes storage cabinets, process cooling/freezing, coldstores

Includes process chillers

1. Subsectors

Transport refrigeration

Refrigerated trucks/trailers	Road transport trucks
	Refrigerated trailers
	Refrigerated railcars
	Marine refrigeration

Neglected due to complications over national ownership

1. Subsectors

Summary of subsectors – air conditioning

	Self-contained air conditioners	R22, R410A, R407C
	Split residential air conditioners	R22, R410A, R407C
	Split commercial air conditioners	R22, R410A, R407C
Unitary air conditioning	Duct split residential air conditioners	R22, R410A, R407C
conditioning	Commercial ducted splits	R22, R410A, R407C
	Rooftop ducted	R22, R410A, R407C
	Multi-splits	R22, R410A, R407C
Chillers	Air conditioning chillers	R22, R410A, R407C
Cilliers	Process chillers	R22, R410A, R407C
Mobile AC	Car air conditioning	R22, R410A, R407C

R22 GWP = 1800; R410A GWP = 2100, R407C GWP = 1700

1. Subsectors

Summary of subsectors - refrigeration

Domestic refrigeration	Domestic refrigeration	R134a		
	Stand-alone equipment	R134a, R404A		
Commercial Refrigeration	Condensing units	R22, R404A		
	Centralised systems for supermarkets	R22, R404A		
	Low-temperature non-food-industry	R22, R404A		
Industrial rafrigaration	Stand-alone (FPCS)	R134a, R404A		
Industrial refrigeration	Condensing units (FPCS)	R22, R404A		
	Centralised systems (FPCS)	R22, R404A		
Transport Refrigeration	Refrigerated trucks/trailers	R134a, R404A		

*FPCS = food processing and cold storage

R22 GWP = 1800; R134a GWP = 1400, R404A GWP = 3800

- Purpose of adopting TOs to reduce emissions
 - –(Direct) refrigerant-related emissions
 - Energy-related emissions
- Several different categories of technical options
 - -Containment
 - Alternative refrigerants
 - -Alternative refrigerants and alternative system
 - -Not-in-kind cycles

- Containment (and similar)
 - –Leak reduction (design/construction of system)
 - Leak reduction (through service & maintenance practices)
 - Charge size reduction (system/component design)
 - Recovery and recycling (improved tooling and practices)

2. Technical Options (TOs)

• Alternative refrigerants

- HC R600a (GWP = 3, flammable, low pressure)
- HC R290/ R1270 (GWP = 3, flammable)
- HFC R161 (GWP = 12, flammable, toxivity under reveiw)
- HFC R152a (GWP = 140, flammable)
- R717 (GWP = 0, low flammability, higher toxicity)
- R744 (GWP = 1, high pressure, low critical temperature)
- R718 (GWP = 0, very low pressure, freezing point = 0 deg C)
- unsat-HFC (e.g., R1234yf, R1234ze, etc; GWP < 10, low flammability)
- HFC R32 (GWP = 700, low flammability; for refts with higher GWP)
- HFC/unsat-HFC blends (unknown to date; GWP maybe 300 700...)
- -DME/R-E170 (GWP = 3, flammable)
- HFC R134a (GWP 1400; to replace refrigerants with higher GWP)

- Alternative refrigerants + systems
 - Low-GWP + liquid secondary [centralised] (e.g., glycol, brine)
 - -Low-GWP + PCM secondary [centralised] (e.g., ice slurry)
 - -Low-GWP + evaporating secondary [centralised] (e.g., CO2)
 - -Low-GWP + liquid secondary [discrete] (e.g., glycol, brine)
 - Low-GWP + cascade (typically with CO2)
 - Distributed water-cooled (central chiller with localised water-cooled condensing units)
 - District cooling (incl. district heat pump heating)
- * "Low-GWP" includes any low-GWP refrigerant (HCs, R717, unsat HFCs, etc)

- Not-in-kind cycles
 - –Air cycle (Brayton)
 - -Absorption (liquid) (solar or gas driven)
 - Adsorption (solid) (solar or gas driven)
 - Desiccant/evaporative (solar or gas driven)
 - -Thermo-electric (Peltier)
 - -Magnetic
 - -Stirling
 - Ejector cycle (solar or gas driven)

- Possible number of combinations to evaluate excessive
 - -Number of system types: 19
 - -Number of TOs: 31
 - -Overall, approximately 550 combinations
- Many TOs are not viable for certain applications
- Necessary to carry out filtering exercise to identify the "optimum" TOs for subsectors

- Filtering exercise based on simple ranking approach
- Combines three different measures to provide an overall indicator
- TEWI rating (incl. energy related + GWP emissions)
 - -GWP, charge size, in-use leak rate, EOL leakage, seasonal efficiency, energy production emissions factor
- Degree of demonstration (for subsector)
 - -Has TOs been proven, demonstrated, only theory, etc
- Extent of application of TOs (for subsector)
 - What is maximum percentage of subsector that could be viably covered by TOs (limited by cost, efficiency, regs, etc)

										M	X
		Unitary air conditioning						Chillers		Transport AC	
Air conditioning I	Self- conta ined	Res split	Res duct split	Com m split	Multi -split	Rooft op duct	Com m duct split	AC chille r	Proce ss	Car AC	Large vehicl e AC
Leak reduction (design/const)		Х	Х	Х		Х	Х	Х	Х		Х
Leak reduction (maintenance)			Х	Х		Х	Х	Х	Х	Х	Х
Charge size reduction					Х						х
Recovery and recycling											х
HC R600a											
HC R290/ R1270	х	Х	Х	Х		Х		Х	Х	Х	
HFC R161											
HFC R152a											
R717								Х	Х		
R744									Х		
R718											
unsat-HFC	х				Х					Х	
HFC R32		Х	Х	Х							
HFC/unsat-HFC blends							Х				
DME/R-E170											
HFC R134a											
Low-GWP + liquid sec (centralised)	Х				Х	Х	Х				
Low-GWP + PCM sec (centralised)											
Low-GWP + evap sec (centralised)											

AST

435 .	Unitary air conditioning							Chillers		Transport AC	
Air conditioning II	Self- conta ined	Res split	Res duct split	Com m split	Multi -split	Rooft op duct	Com m duct split	AC chille r	Proce ss	Car AC	Larg vehi e A
Low-GWP + cascade (centralised)											
Low-GWP + liquid sec (discrete)											
Low-GWP + PCM sec (discrete)											
Low-GWP + evap sec (discrete)											
Low-GWP + distrib W-C (centralised)											
Air cycle (Brayton)											
Absorption (liquid) (gas driven)											
Adsorption (solid) (gas driven)											
Absorption (liquid) (solar driven)											
Adsorption (solid) (solar driven)											
Desiccant/Evaporative (gas driven)											
Desiccant/Evaporative (solar driven)											
Thermo-electric (Peltier)											
Magnetic											
Stirling		_				_			_	_	_
Low-GWP + ejector cycle (gas driven)											
Low-GWP + district cooling	Х	Х	Х	Х	Х	Х	Х	Х			
Ground water											

B EN

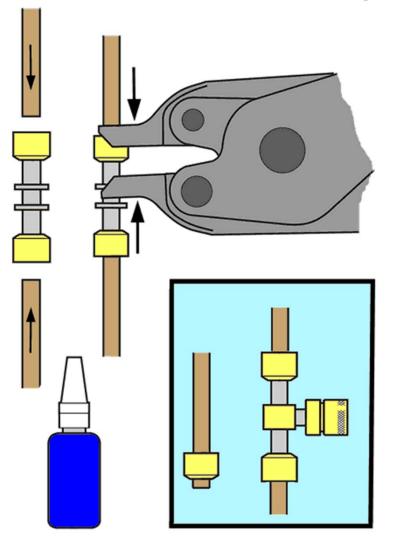
	Dom ref		Comm ref		Inc	Transpo rt refrig		
Refrigeration II				Centrali sed				Ref
	Dom ref	Stand- alone	Cond units	(s/mark ets)	Stand- alone	Cond units	Centrali sed	trucks/t railers
Leak reduction (design/const)	х	Х	х					х
Leak reduction (maintenance)	х	Х						
Charge size reduction	х							
Recovery and recycling					х			
HC R600a	х	Х			х			
HC R290/ R1270		Х			х			х
HFC R161								
HFC R152a								
R717						Х		
R744			х	х	х	Х		х
R718								
unsat-HFC			х					
HFC R32								
HFC/unsat-HFC blends								
DME/R-E170								
HFC R134a								
Low-GWP + liquid secondary (centralised)				Х			х	
Low-GWP + PCM secondary (centralised)								
Low-GWP + evap secondary (centralised)				х			х	

	Dom ref	Comm ref			Inc	Transpo rt refrig		
Refrigeration II	Dom ref	Stand- alone	Cond units	Centrali sed (s/mark ets)	Stand- alone	Cond units	Centrali sed	Ref trucks/t railers
Low-GWP + cascade (centralised)				х			х	
Low-GWP + liquid secondary (discrete)			х			Х		
Low-GWP + PCM secondary (discrete)								
Low-GWP + evap secondary (discrete)								
Low-GWP + distributed W-C (centralised)				х			х	
Air cycle (Brayton)								
Absorption (liquid) (gas driven)								
Adsorption (solid) (gas driven)								
Absorption (liquid) (solar driven)								
Adsorption (solid) (solar driven)								
Desiccant/Evaporative (gas driven)								
Desiccant/Evaporative (solar driven)								
Thermo-electric (Peltier)								
Magnetic								
Stirling								
Low-GWP + ejector cycle (gas driven)								
Low-GWP + ejector cycle (solar driven driven)								
Low-GWP + district cooling								
Ground water								

A CO

- Selected TOs used for deeper evaluation
 - -Leak reduction (design/const) -Low-GWP + liquid secondary
 - Leak reduction (maintenance)
 - Charge size reduction
 - -Recovery and recycling
 - -HC R600a
 - -HC R290/ R1270
 - -R717
 - -R744
 - -unsat-HFC
 - -HFC R32
 - -HFC/unsat-HFC blends

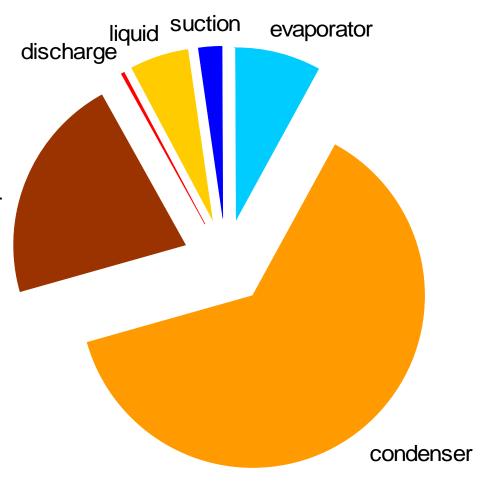
- Low-GWP + liquid secondary (centralised)
- -Low-GWP + evap secondary (centralised)
- -Low-GWP + cascade
 (centralised)
- Low-GWP + liquid secondary (discrete)
- Low-GWP + distributedwater-cooled (centralised)
- –Low-GWP + district cooling


2. TOs – Leak reduction (design/construction)

- Improve the tightness of systems (use existing refrigerant)
- Good design
 - Avoid vibration, external mechanical impact, possibility of corrosion, etc
- Selection of components
 - -Avoiding flare connections, schraeder valves, good parts
 - Components tested under EN 16084 (Qualification of tightness of components and joints)
- Tightness testing
 - Systematic testing of systems, use of helium tracer gas and high sensitivity gas detectors
- NEXT PRESENTATION PROVIDES MORE DETAIL

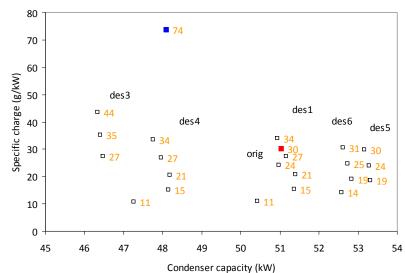
2. TOs – Leak reduction (design/construction)

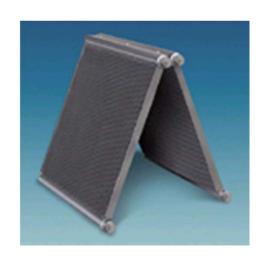
2. TOs – Leak reduction (maintenance)

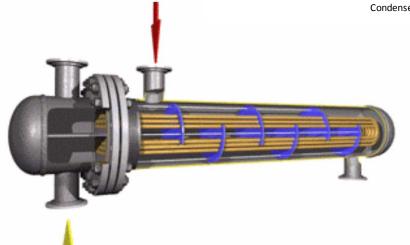

- Minimise emissions of refrigerant by improved service and maintenance
- Encourage more conscientious behaviour of technicians
- NEXT PRESENTATION WILL PROVIDE MORE DETAIL

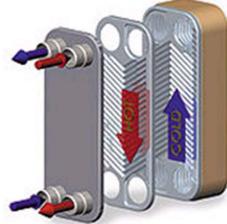
2. TOs – Charge size reduction

- If refrigerant charge can be reduced, total emitted quantity will be less
- Standard techniques
 - Compact HXs, brazed plate, etc
 - —Smaller liquid line sizesMini-channel compressorcompressor
 - Avoid receivers (use subcooling region)
 - Minimise accumulator volume
 - —Carefully selected oil (low solubility)






2. TOs – Charge size reduction


Selection of heat exchangers

2. TOs – Recovery and recycling

- Minimise emissions of refrigerant by improved refrigerant recovery
 - During service and maintenance and particularly at end of life/disposal
- Encourage more conscientious behaviour of technicians
- Availability of recovery machines, recovery cylinders and take-back scheme for recovered refrigerant
- NEXT PRESENTATION WILL PROVIDE MORE DETAIL

Refrigerant	R-600a (iso-butane)
Type	Hydrocarbon
ODP	0
GWP	<3
Safety classification	A3 (high flammable, low toxicity)
Vapour pressure	3.5 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$2 - 6 / 7 - 20 per kg

Refrigerant	R-290 (propane)
Туре	Hydrocarbon
ODP	0
GWP	<3
Safety classification	A3 (high flammable, low toxicity)
Vapour pressure	9.5 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$2 - 6 / 7 - 20 per kg

Refrigerant	R-1270 (propylene)
Туре	Hydrocarbon
ODP	0
GWP	<3
Safety classification	A3 (high flammable, low toxicity)
Vapour pressure	11.5 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$2 - 5 / 3 - 20 per kg

Refrigerant	R-717 (NH3)
Type	Ammonia
ODP	0
GWP	0
Safety classification	B2 (low flammable, higher toxicity)
Vapour pressure	10.0 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$0.5 – 2 / 1 – 4 per kg

Refrigerant	R-744 (CO2)
Type	carbon dioxide
ODP	0
GWP	1
Safety classification	A1 (non-flammable, low toxicity)
Vapour pressure	64.3 bar @ 25 deg C
Experience	Extensive
Availability	Good
Price	\$0.5 – 2 / 5 – 7 per kg

Refrigerant	R-1234yf
Type	HFC
ODP	0
GWP	3
Safety classification	A2 (low flammable, low toxicity)
Vapour pressure	6.8 bar @ 25 deg C
Experience	Limited
Availability	Not commercially available
Price	\$45 – 65 / 45 – 80 per kg

Refrigerant	R-1234ze
Туре	HFC
ODP	0
GWP	12
Safety classification	A2 (low flammable, low toxicity)
Vapour pressure	5.0 bar @ 25 deg C
Experience	Limited
Availability	Limited
Price	\$30 – 50 / 30 - 65 per kg (?)

Refrigerant	R-32
Type	HFC
ODP	0
GWP	700
Safety classification	A2 (low flammable, low toxicity)
Vapour pressure	16.9 bar @ 25 deg C
Experience	Limited
Availability	Limited
Price	\$7 – 9 / 30 – 50 per kg

Refrigerant	R-4?? [not yet known]
Туре	HFC blend
ODP	0
GWP	300 – 1500
Safety classification	A1, a" (non-/low flammability, low toxicity)
Vapour pressure	[not known]
Experience	None
Availability	Not commercialised
Price	\$ high

	Safety class	ATEL (kg/m3)	LFL (v/v)	Pressure (bar)
HCFC-22	A1	0.3	-	10.4
R-744	A1	0.07	-	64.3
HFC-1234ze	A2(L)	[0.28]	7.5%	5.0
HFC-1234yf	A2(L)	0.47	6.3%	6.8
HFC-152a	A2	0.14	4.8%	6.0
HC-1270	A3	0.01	2.5%	11.5
HC-290	A3	0.09	2.1%	9.5
R-717	B2(L)	0.00035	13%	10.0

2. TOs – general – safety rules for alternative refrigerants

Lower (chronic)

toxicity

Implications of refrigerant classification

No flame propagation

flammability

flammability

Lower

Higher

n

A1

A2 --

A3

HC-290

HC-1270 [HFC-161]

HCFC-22

HFC-1234ze

HFC-1234yf

HFC-152a

R-744

Higher (chronic)

B1

B2---- R-717

B3

More onerous requirements

More onerous requirements

2. TOs – general – safety rules for alternative refrigerants

Main topics within RAC safety standards

- Classification of refrigerants, occupancy, systems
- Refrigerant charge size limits
- Safe design and testing of components and pipes
- Safe design and testing of assemblies (systems)
- Electrical safety, sources of ignition
- Installation areas, positioning, pipework, mechanical ventilation, gas detection
- Instructions, manuals, data-plates
- Refrigerant handling

2. TOs – general – safety rules for alternative refrigerants

Standard	Equipment type	Covers
EN 378	Commercial and industrial	Components, safety devices, system design, location, charge size limits, refrigerant
[ISO 5149]*	Commercial and industrial	classification, installation site, maintenance
60335-2-24	Domestic fridges and freezers	Marking, pressure testing, electrical
60335-2-40	Factory built a/c and heat pumps	Marking, pressure testing, maintenance, electrical, charge limits
60335-2-89	Factory built commercial fridges	Marking, pressure testing, electrical

^{*} Currently still at draft stage

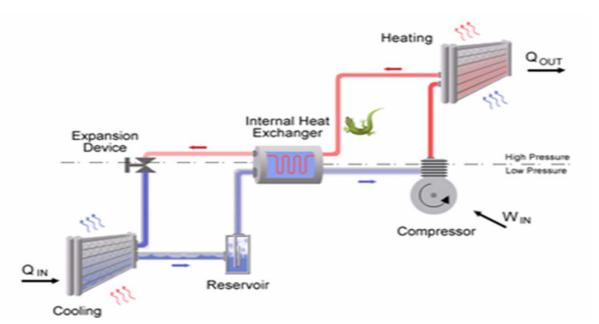
2. TOs – general – safety rules for alternative refrigerants

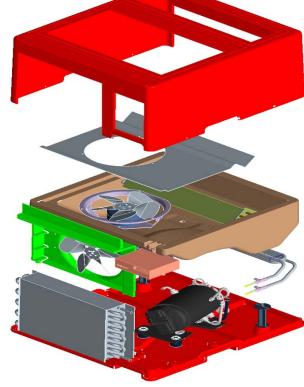
	Max charge (occupied)	PL (g/m³)	Max charge - outside	Safe electrics
HCFC-22	No limit	300	No limit	No
R-744	No limit	100	No limit	No
HFC-1234ze	3.1 – 25 kg	[40]	No limit	Yes
HFC-1234yf	2.3 – 25 kg	60	No limit	Yes
HFC-152a	5 – 25 kg	27	No limit	Yes
HC-290	1 2 E kg	0	25 kg/no limit	Vos
HC-1270	1 – 2.5 kg	8	25 kg/no limit	Yes
R-717	2.5 – 25 kg	0.4	No limit	Some

2. TOs – Commercial refrigeration (stand-alone) – HC-

600a, HC-290

- Many integral commercial units on HCs
 - -Numerous manufacturers
 - Range from mini glass door bottle coolers, vending machines, ice-cream freezers, catering units, to multi-deck cabinets
 - -Charge sizes from 100g to 1kg





- 2. TOs Commercial refrigeration (stand-alone) R744 (CO2)
- Coca Cola adopting "cassette" concept for bottle coolers and vending machines

-The components of a CO2 refrigeration system are similar to

those used in an R134a system

FKDv3412

Baseline and Mitigation Strategy for Thai RAC

2. TOs – Commercial refrigeration (stand-alone) – R744

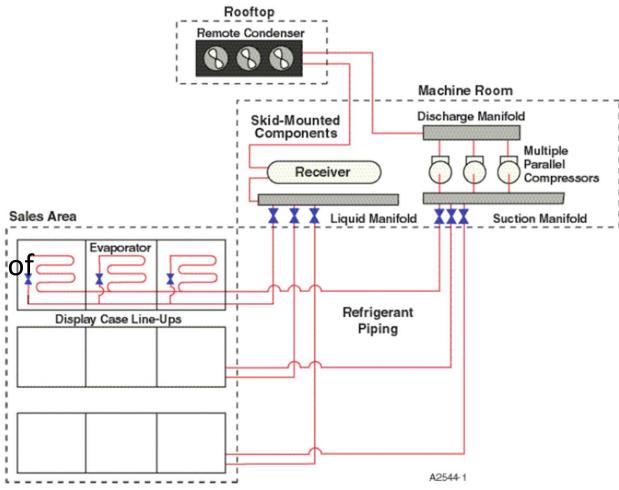
(CO2) Europa 130

- CO2 and R134a global S-Cassette (Cassette design 1) tested in a 510L cabinet
 - Energy savings between brackets
 - CO2 cassette equipped with capillary tube. R134a cassette equipped with expansion valve. This gives an advantage of few % for R134a system

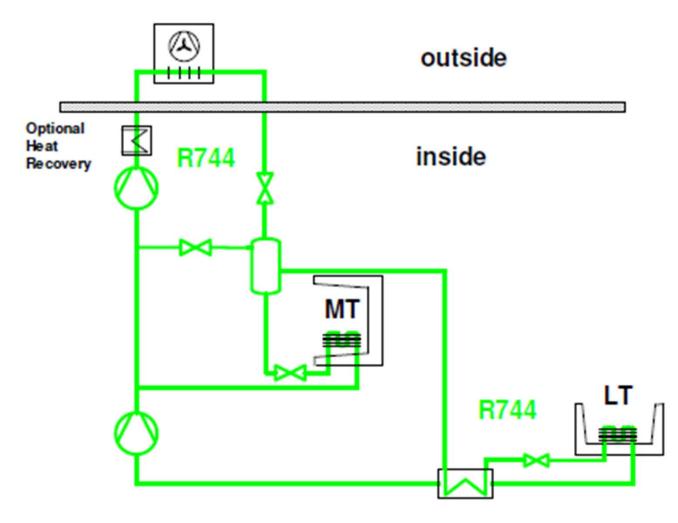
TCCC's Test Conditions	CO2 - (KWh/day)	R134a – (KWh/day)
<u>D</u> (40.6°C - 75%RH)	8.25	7.78 (5.7% lower)
<u>C</u> (32.2°C - 65%RH)	5.79 (16% lower)	6.91
<u>B</u> (23.9°C - 45%RH)	4.97 (3.3% lower)	5.14

- 2. TOs Commercial refrigeration (stand-alone) R744 (CO2)
- CO2 and R134a global S-Cassette (cassette design 2) tested in 550L cabinet & different CO2 comp
 - Energy savings between brackets
 - Both CO2 AND R134a cassettes are equipped with capillary tube

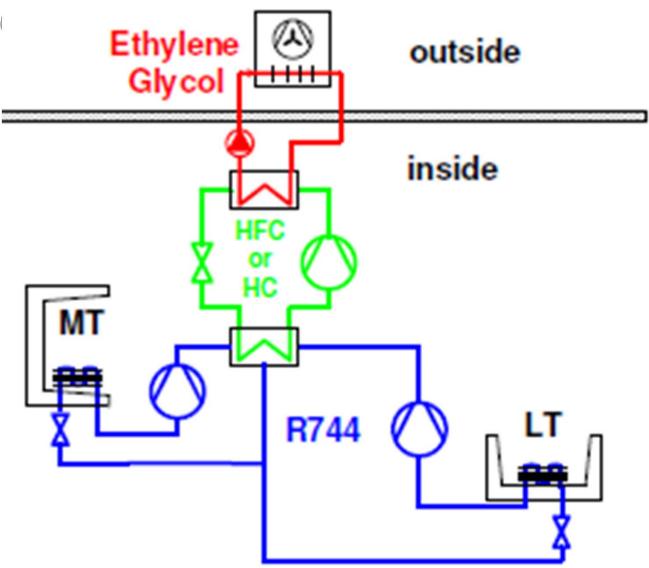
TCCC's Test Conditions	CO2 - (KWh/day)	R134a – (KWh/day)
<u>D</u> (40.6°C - 75%RH)	9.67 (24% lower)	12.77
<u>C</u> (32.2°C - 65%RH)	5.78 (30% lower)	8.30
<u>B</u> (23.9°C - 45%RH)	4.40 (21.8% lower)	5.63



2. TOs – Commercial refrigeration (centralised systems) – low-GWP + secondary


- Conventional system
 - Pack system,pipeworkdistributed tocases andcoldstores
 - Large quantities of R404A
- Separate ventilation and heating system

- 2. TOs Commercial refrigeration (centralised systems) low-GWP + secondary
 - Two stageCO2 system
 - -Entirely CO2

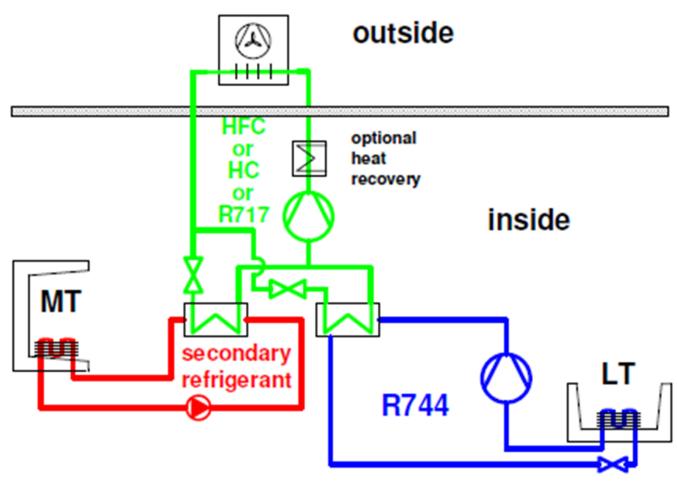


2. TOs – Commercial refrigeration (centralised systems) –

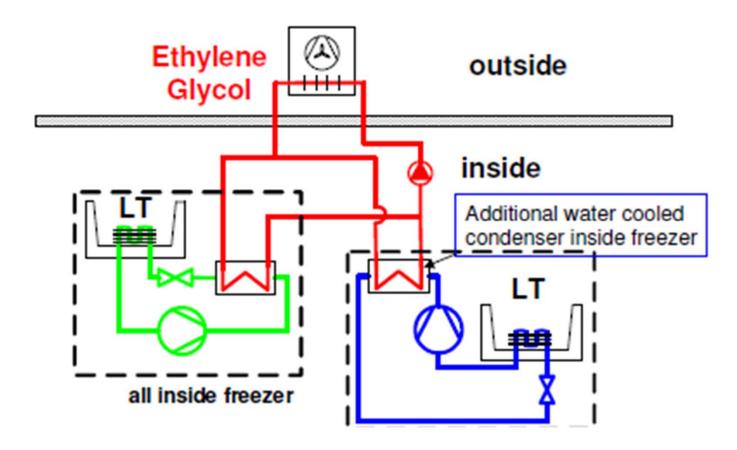
low-GWP + secon

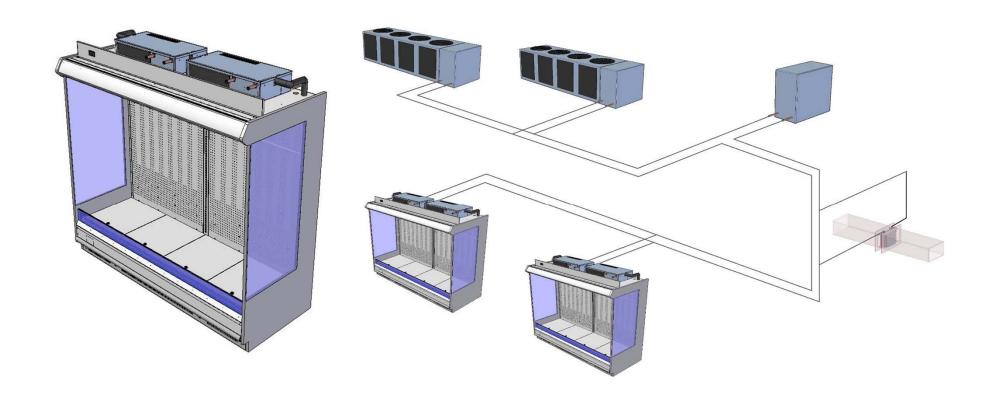
Cascade Indirect Multiplex System with CO2

- Utilises HFC,HC or NH3 in high stage
- CO2 in low(LT and MT)stages



2. TOs – Commercial refrigeration (centralised systems) – low-GWP + secondary


Part Indirect Multiplex System with CO2

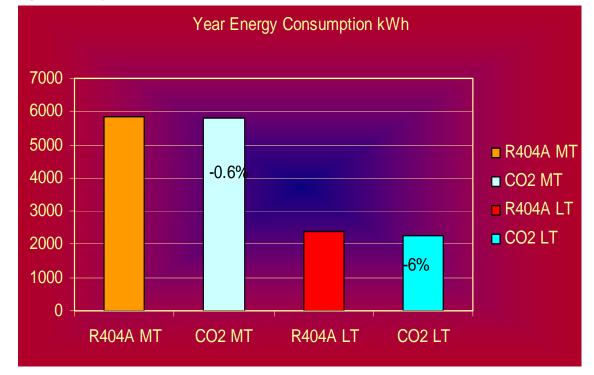

- 2. TOs Commercial refrigeration (centralised systems) low-GWP + secondary
 - Indirect circuit with integral condensing units

2. TOs – Commercial refrigeration (centralised systems) – low-GWP + secondary

- 2. TOs Commercial refrigeration (centralised systems)
- low-GWP + secondary
- Example of
 - -Supermarket installation
 - –water cooled packs

2. TOs – Commercial refrigeration (centralised systems) – low-GWP + secondary

- Example of
 - -Supermarket installation
 - -air-cooled gas cooler
 - Compressor racks



- 2. TOs Commercial refrigeration (centralised systems) low-GWP + secondary
- Comparison of supermarket systems
 - MT 120kW, LT 20kW
 - HER weighted upon internal thermal load

Minimum condensing temperature +25 C (R404A), +15° C

(CO2)

2. TOs - Chillers - HC290/HC1270

- Several current manufacturers
 - Benson, Bright, Earthcare, Frigadon, Futron, Klima-therm, Weatherite, York/JCI, others...
- All produce chillers using HC and other refrigerants (HFC, HCFC, ammonia, etc)
- Used for both refrigeration as well as air conditioning applications

2. TOs - Chillers - HC290/HC1270

- York/JCI
 - -Air-cooled chillers
- Safety aspects
 - Designed to EN 378; up to 25 kg of R290
- Cost is marginally more than HFC products, but apply "green premium"
- R290 gives ~15% higher COP than R407C, R410A products

Туре	Cap.* kW at 50 Hz	Power input kW	COP unit dim
HSAS-95-1	95	27,6	3,84
HSAS-95-2	95	27,0	3,84
HSAS-140-1	132	38,8	4,01
HSAS-140-2	132	35,1	3,95
HSAS-200-1	178	53,2	4,24
HSAS-200-2	178	46,0	4,29
HSAS-260-1	218	59,2	4,01
HSAS-260-2	218	54,2	4,01
HSAS-340-1	265	75,5	4,22
HSAS-340-2	265	68,1	4,19

