

Energy Efficient Solutions for EAF

Ecoplants-Technologies by SMS Group

Dr. Christian Fröhling General Manager Energy & Environmental Technologies / Gas Cleaning SMS Siemag AG, Germany ıfidential · All rights reserved · © 2014 SMS GmbH

Introduction – Who we are

The familiy owned SMS group is internationally active in plant construction and mechanical engineering relating to the processing of steel and nonferrous metals.

SMS (ii) group

3,070 m Euro turnover ca. 13.500 employees (total)

SMS SIEMAG

1,8 m Euro turnover ca. 7,500 employees

Metallurgical plant | Continuous casting | Hot rolling mills | Cold rolling mills | Aluminum rolling mills | Strip processing lines/ Furnace technology | Electrics and Automation | Service | Energy & Environmental Technologies

SMS MEER

1,2 m Euro turnover ca. 3,500 employees

Steelmaking plants / Continuous casting | Tube plants | Long product rolling mills | Forging technology | Nonferrous metal plants | Induction technology | Electrics and Automation | Service

ca. 1,500 employees

Ironmaking | Cokemaking |
Steelmaking | Environmental
solutions | Recycling technologies
| Non Ferrous | Civil &
Environmental Engineering

International locations - SMS Group

Environment protection and economical success – a conflict?

Ecoplants – resource-efficient technologies

SMS @ group

Selection of references

Our product portfolio of environmental technologies

GmbH

Recovery of energy from waste heat at melting units

Recovery of energy from waste heat at melting units

Typical set up of an EAF plant with a two step Energy Recovery System

Further development: Compact Boiler for EAF – future design

Four different cases for EAF

Electricity tariffs worldwide

SMS @ group

Options for steam utilisation

Examples for steam utilisation

Drive vacuum pumps at VD/RH plant with steam

Usage of steam to degas steel

Steam

1 t steam / 10- 20t steel

need:

Steam

10-15 bar / 185-208° C

conditions:

Cooling by absorption chilling

- Delivery of steam to steam-fired absorption chillers
- Cold production for cooling control rooms

Steam need: 1 t steam / 0.45 MWh

Steam conditions: 1.1 bar / 125 ° C

SMS (a) group

Steam network

Delivery of steam to different producers

DRI-Plant

- 1 t Steam / 2 t DRI
- 145 190 °C / 3 15 bar

Heating Pickling Line

Heating of pickling fluid

1 t steam / 40-50 t sheets

Fan or pump drive turbine

Delivery of steam to fan drive

1t steam / 90 - 170 KWh

Evaporation of liquid wastes

e.g. Preparation of oil-in-water emulsions by using steam

■ 1 t steam / 6.5m³

Confidential - All rights reserved - © 2014 SMS GmbH

Example EAF: steam generation at one charge (FuXin, China)

Example EAF: Human-Maschine-Interface (FuXin, China)

SMS @ group

SMS (a) group

ARCCESS® steady EAF (S/EAF®) – continuous steelmaking

S/EAF® - core components

SMS @ group

A new electric arc furnace S/EAF® for continuous operation

Energy Recovery at S/EAF®

Scenario

120 t S/EAF® with 85% HDRI + 15% CDRI

- Steam generation:88 t/h(398°C, 38 bar= superheated)
- 18 MW_{el}
- Steam production: 747,000 t/a
- Electricity production 157,700 MWh p.a.

Cost reduction

S/EAF®: Electric Arc Furnace without non-productive downtime Heat 1 Heat 2 Heat 3 Heat 4 **EAF** operation Tapping **Tapping Tapping Tapping** Electric power Heat 1 Heat 2 Heat 3 Heat 4 Confidential - All rights reserved - © 2014 SMS GmbH steady - 30% **EAF** operation Time **Tapping Tapping Tapping Tapping**

Comparison of S/EAF® and EAF Process – Scenario Calculation

Increased Productivity at same Heat Size or smaller Equipment for same annual Steel Production

	EAF ₁₆₀	S/EAF® ₁₆₀	S/EAF® ₁₂₀
Tapping weight	160 t	160 t	120 t
Production capacity	1.6 m. tpy	2.1 m. tpy	1.6 m. tpy
Productivity	210 t/h	280 t/h	210 t/h
Specific energy consumption → incl. Energy Recovery	420 kWh/t 375 kWh/t	400 kWh/t 310 kWh/t	390 kWh/t 305 kWh/t
Tap-to-tap time	46 min	34,5 min	34,5 min
Transformer capacity	160 MVA	160 MVA	130 MVA
Energy Recovery	9,5 MW _{el}	25 MW _{el}	18 MW _{el}

PEM – Primary Energy Melting

Optimization of energy input for scrap-based steelmaking

200 MJ / t
Overheating
with electric energy

Melting with gas (instead of electric energy)

1,400 MJ/t

PEM – Primary Energy Melting

Primary Energy and CO₂ reductions using PEM technology

Concept

- Scrap melting with primary energy
- Direct conversion of primary energy into heat
- No energy losses through electric power generation and transmission

^{*} Average according to a study by World Steel Association

Pilot plant facts

- Installation: in existing melt shop
- Target: increase hot metal offer for BOF
- PEM melting capacity: 30 t/h
- Shaft diameter: 2 m
- Start hot commissioning: 05/2014

Energy recovery from hot slabs

Rise of energy efficiency: Transportable isolation box

Energy recovery from hot slabs

Design of heat exchanger module

Energy recovery

- 50 70 kW_{therm} / m²at casting outlet
- 15 m roller table (1,500 mm wide slabs) enables the generation of about 7,000 to 10,000 tons of steam p.a.
- No influence on production process!
- Simple and maintenance free design
- Modular and easy expandable
- Qualified for hot charging

Design of heat exchanger module

Cross section drawing of the heat recovery system

Reference: Salzgitter Flachstahl, Germany

SMS @ group

Environmental Services

Overview

Maintenance

- Maintenance
- Inspection
- Repair work
- Revisions
- Service-contracts
- Replacement 1:1
- Spare parts

Modification

- Plant upgrades/ Retrofit
- Performance improvement
- Emission reduction
- Efficiency improvement
- Firing system upgrades
- Life time calculation
- Plant behavior

Engineering

- Engineering (case studies, feasibilities)
- Supervision
- Commissioning
- State Examinations
- Measurement + Analysis
- X-pact Energy Advisor (Monitoring-System)

Concept of Energy Optimization Studies

- One-week on site analysis for the detection of optimization potential
- Priorisation of the potentials with customer
- Development of specific energy efficiency measures

Low to no investment

- Consumption forecast / individual procurement
- Peak load shedding
- Optimise production plan from an energetic point of view

Modernizations

- Replace inefficient consumers
- Use more efficient media
- Adapt temperature levels
- Start-stop mechanisms

Plant revamp and extension

- Waste heat recovery at EAF/BOF
- Process gas utilisation at BOF
- Heat recovery from hot slabs

Saving energy

Reducing energy costs

Recovering energy

Energy efficiency measures and energy costs

Example for saving potential

Excerpt from the Stahl und Eisen iournal 2009

"If an Energy Monitoring Information System has been installed correctly and the respectively appropriate measures have been taken, savings of between 5% and

20% are typical, with 8% being a realistic value. The amortisation period of these systems typically amounts to between one and two years."

J.Hundrieser / O.Seifert, Stahl und Eisen 129 (2009) No. 7

- 31 m. €/year Generating electricity from blast furnace gas
 - (2 blast furnaces, 250.000 m³/h gas)
- 5 m. €/year Electric energy efficiency measures
 - (Savings of 5% by a consumption of 2 TWh electrical energy)
- 2 m. €/year Usage of converter offgas
 (3 converters, 1.3 m t liquid steel)

Environmental Services - X-Pact® Energy Advisor

Target

Energy
Consumption

Monitoring
Controlling
Decreasing & Optimization

The X-Pact® Energy Advisor is assembled in three levels

Concept

Measurement engineering

SMS @ group

X-Pact® Energy Advisor collects energy data from all plant units

Specific Aspects of our X-Pact® Energy Advisor

Summary Services

Benefits of Studies and X-Pact® Energy Advisor by SMS Siemag AG Effective measurement concept Low Invest Detect energy saving potential Consumption Costs Increase efficiency continuously Consumption → Costs Optimize energy procurement Costs Support energy controlling Costs Consumption Profit from Certification ISO 50001 → Costs Confidential · All rights reserved · © 2014 SMS GmbH Consumption 6

Gas cleaning process

Conventional

GasCleaning Assistent

Exhaust damper

Indication of damper position

Constant pressure in main pipe

Controlling of ID Fan speed

Mathematical model - immediate calculation

Consideration of network resistances

+ High accuracy

Variable underpressure

Excellent energy efficiency

Reference: Kademir, Turkey

Plant Description

Reference KADEMIR

Annual output: 1.3 m. tons of steel

Characteristics

Converters:

Heats per year: 14,000 pieces **Energy price:** 0.06 € / kWh

Comparison

Energy input avg. = 1,600 MWh

Costs = 835,000 € / year

GasCleaningAssistant

Energy input avg. = 1,200 MWh

Costs = 650,000 € / year

KARDEMİR

Savings approximately 185,000 € p.a. **21%**

Conclusion

